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Goal: minimizing ℓ0 on kerA \ {0}

Figure: ℓ0

min
{
ℓ0(x) : x ∈ Rn \ {0},Ax = 0

}

— New Capra polyhedral approximations of ℓ0 using Capra cuts

(a) One diagonal (b) Two diagonals (c) All diagonals

— Algorithm and convergence result for the abstract cutting plane method [1, 4, 3] for a general coupling c

We say {x i}i≥0︸ ︷︷ ︸
primal iterates

⊂ X , {y i}i≥0︸ ︷︷ ︸
dual iterates

⊂ Y and {z i}i≥1︸ ︷︷ ︸
lower bounds

⊂ R

are generated by CP(X , x0, f , c,
(
Y i

)
i≥0

,
(
E i
)
i≥0

), if

1. Initialization.
x0 ∈ X︸︷︷︸

optimization set

⊂ X

2. c-subgradient selection.
y i = Y i(x i), where Y i : X → Y s.t. Y i(x) ∈ ∂cf (x)︸ ︷︷ ︸

c-subgradient selector

3. i-th primal subproblem.

(x i, z i) ∈ arg min
(x ,z)∈X×R

z s.t.


x ∈ X , (x , z) ∈

additional constraints︷ ︸︸ ︷
E i ⊂ X × R

z ≥ f (x j) + c(x , y j)− c(x j, y j)

∀j ∈ J0, i − 1K

4. Stop condition. If not satisfied i := i + 1. Go to Step 2

Theorem

Let CP(X , x0, f , c,
(
Y i

)
i≥0

,
(
E i
)
i≥0

) be a cutting plane method

generating {x i}i≥0 ⊂ X , {y i}i≥0 ⊂ Y and {z i}i≥1 ⊂ R

If
▶ X ⊂ X is compact and f :

(
X , d

)
→ R is l.s.c. in X

▶ ∂cf (x) ̸= ∅ , ∀x ∈ X
▶
(
arg minX f

)
× {minX f } ⊂ E i ⊂ X × R, for all i ∈ N

▶ there exists M > 0 such that

|c(x , y)− c(x ′, y)| ≤ Md(x , x ′) , ∀x , x ′ ∈ X
∀y ∈

⋃
i∈NY

i(X ∩ πX
(
E i
)
)

Then
▶ z i ↗ minX f
▶ {x i}i≥0 has a subsequence {xν(i)}i≥0 −−−−→

i→+∞
x∗ ∈ arg minX f

— Diverging ¢-subgradients of ℓ0 near sparse point [2] and proposed solution with sheath constraints E

Definition

▶ For a source norm ∥·∥, the Capra coupling
¢ : Rn × Rn → R

¢(x , y) =

〈
x

∥x∥
| y

〉
, where

0

0
= 0

▶ Let f : Rn → R be a function and we define
its ¢-subdifferential ∂¢f : Rn ⇒ Rn by

y ∈ ∂¢f (x) ⇐⇒ ¢(x ′, y)− f (x ′) ≤ ¢(x , y)− f (x)
∀x ′ ∈ Rn

1(a) Diverging ¢-subgradients for ℓ0 near sparse points

ε

1(b) Solution: Sheath constraints E

— The subproblem of the Capra cutting plane method is a linear program on the sphere!

¢-subgradient selection (dual)

Solving subproblem (primal)

Stop condition STOP

x0

y i

x i, z i

YESNO

x i

(a) Diagram of the Capra cutting plane method

When X and E are polyhedral (e.g. X = {x : Ax = 0})

min
z∈R
s ∈ S︸ ︷︷ ︸

sphere constraint

z s.t.



s ∈ cone(X )︸ ︷︷ ︸
linear constraints

(s, z) ∈ E︸ ︷︷ ︸
linear constraints
z ≥

〈
s | y j

〉
+ f (x j)− ¢(x j, y j)︸ ︷︷ ︸

linear constraint
∀j ∈ J0, i − 1K

(b) Capra cutting plane method subproblem (c) Gurobi cumulative solving time on A ∈ R2×5

— Numerical results for minimizing ℓ0 in kerA \ {0} for a gaussian matrix A ∈ R2×5 with varying initial cut

(a) No initial cut (b) Constant value 0 initial cut (c) Constant value 1 initial cut (d) Random initial cut in [−1, 1]n
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