Abstract cutting plane method for ℓ_0 minimization

Adrien Le Franc, Jean-Philippe Chancelier Michel De Lara, Seta Rakotomandimby

— New Capra polyhedral approximations of ℓ_0 using Capra cuts

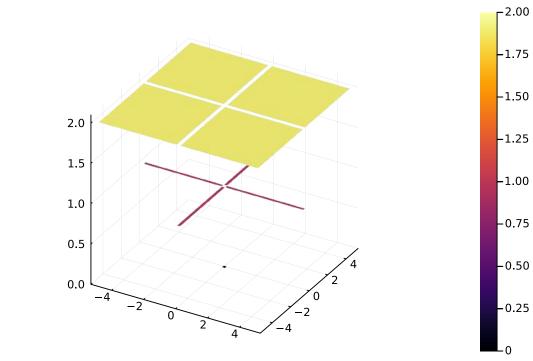
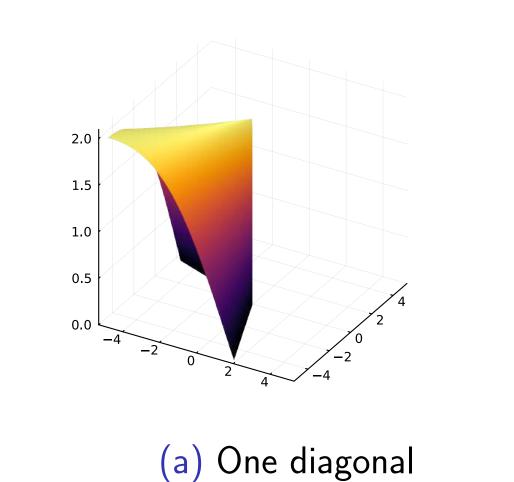
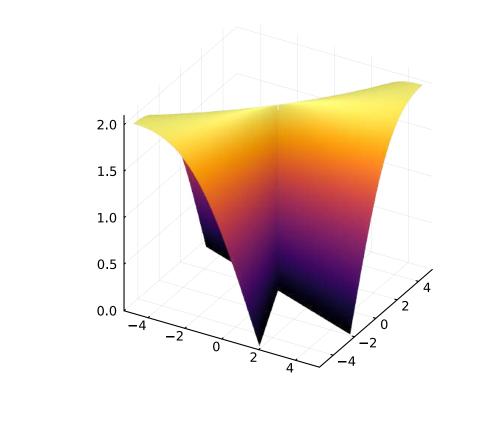
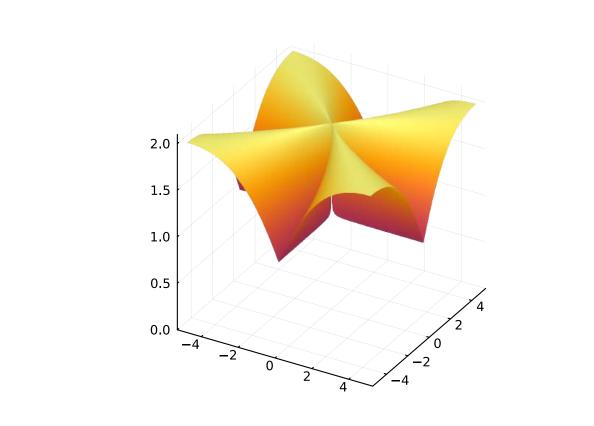


Figure: ℓ_0 $\min \left\{ \ell_0(x) : x \in \mathbb{R}^n \setminus \{0\}, Ax = 0 \right\}$







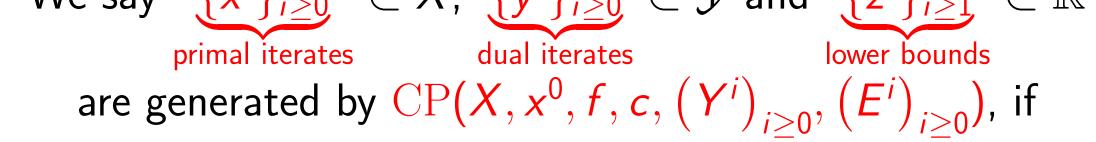
(b) Two diagonals

(c) All diagonals

Algorithm and convergence result for the abstract cutting plane method [1, 4, 3] for a general coupling c

We say
$$\{x^i\}_{i>0} \subset X$$
, $\{y^i\}_{i>0} \subset \mathcal{V}$ and $\{z^i\}_{i>1} \subset \mathbb{R}$

Theorem



Initialization. 1.

- $x^0 \in X$ $\subset \mathcal{X}$ optimization set
- *c*-subgradient selection. 2.

$$y^{i} = Y^{i}(x^{i})$$
, where $Y^{i} : X \to \mathcal{Y}$ s.t. $Y^{i}(x) \in \partial_{c}f(x)$

3. *i*-th primal subproblem.

$$(x^{i}, z^{i}) \in \operatorname*{arg\,min}_{(x,z) \in \mathcal{X} imes \mathbb{R}} z ext{ s.t. } \left\{ egin{array}{l} x \in X \ x \in X \ z \geq f(x^{j}) + c(x, y^{j}) - c(x^{j}, y^{j}) \ orall j \in \llbracket 0, i-1
ight]
ight.$$

4. Stop condition. If not satisfied i := i + 1. Go to Step 2

Let $CP(X, x^0, f, c, (Y^i)_{i>0}, (E^i)_{i>0})$ be a cutting plane method generating $\{x^i\}_{i>0} \subset X$, $\{y^i\}_{i>0} \subset \mathcal{Y}$ and $\{z^i\}_{i>1} \subset \mathbb{R}$

lf

- ▶ $X \subset \mathcal{X}$ is compact and $f : (\mathcal{X}, d) \rightarrow \overline{\mathbb{R}}$ is l.s.c. in X
- $| \partial_c f(x) \neq \emptyset, \forall x \in X |$
- $(\operatorname{arg\,min}_X f) \times {\operatorname{min}_X f} \subset E^i \subset \mathcal{X} \times \mathbb{R}$, for all $i \in \mathbb{N}$
- there exists M > 0 such that

 $||c(x,y)-c(x',y)| \leq Md(x,x'), \ \forall x,x' \in X$ $\forall y \in \bigcup_{i \in \mathbb{N}} Y^i(X \cap \pi_{\mathcal{X}}(E^i))$

Then

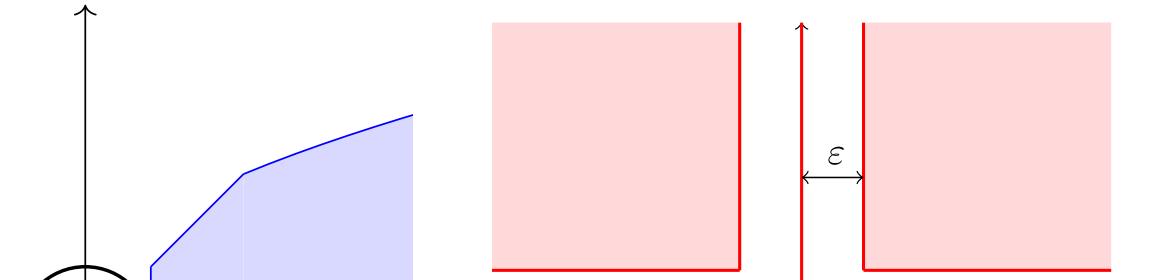
$$z^i \nearrow \min_X f$$

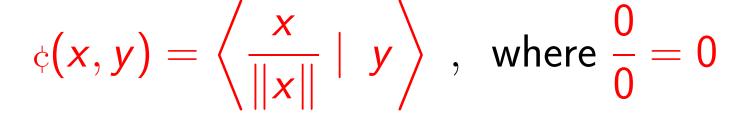
$$\{x^i\}_{i\geq 0} \text{ has a subsequence } \{x^{\nu(i)}\}_{i\geq 0} \xrightarrow[i \to +\infty]{} x^* \in \arg\min_X f$$

Diverging *c*-subgradients of ℓ_0 near sparse point [2] and proposed solution with sheath constraints E

Definition

For a source norm $\|\cdot\|$, the Capra coupling $\mathbf{c}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

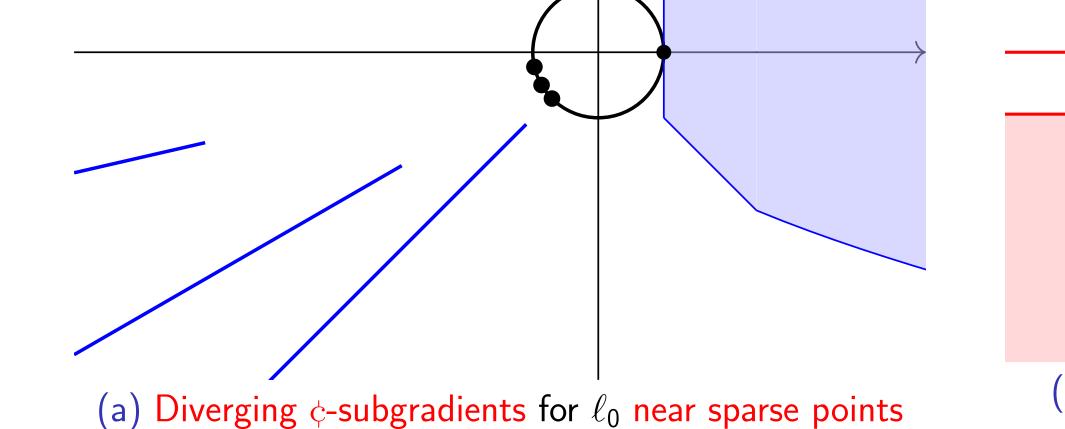




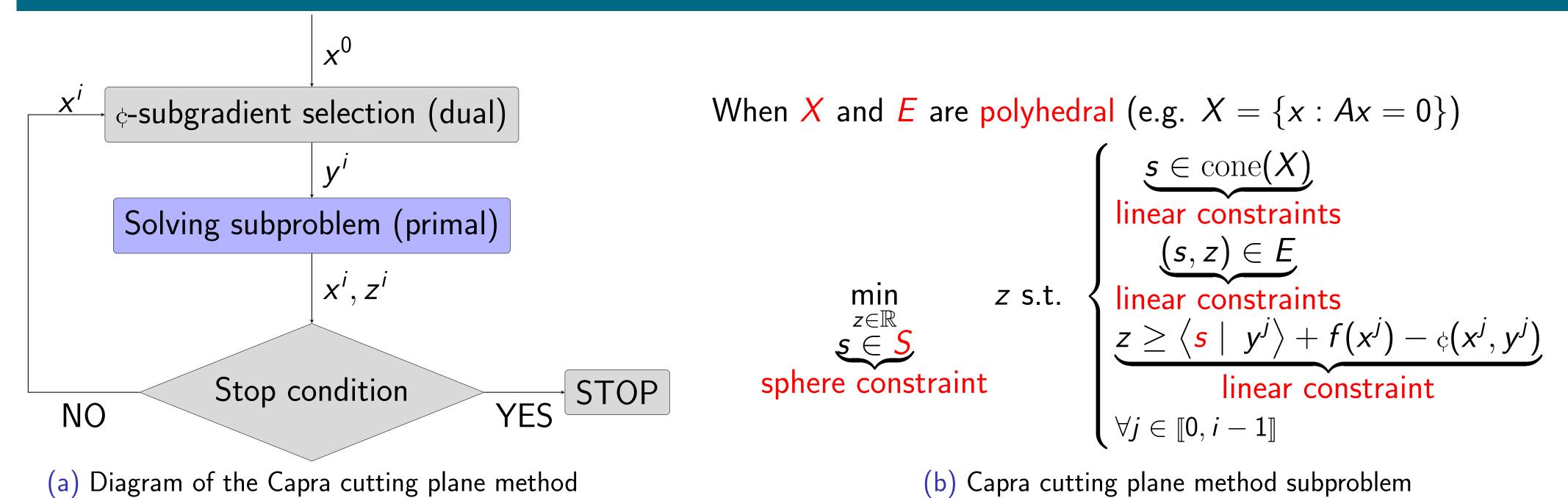
▶ Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a function and we define its c-subdifferential $\partial_c f : \mathbb{R}^n \Longrightarrow \mathbb{R}^n$ by

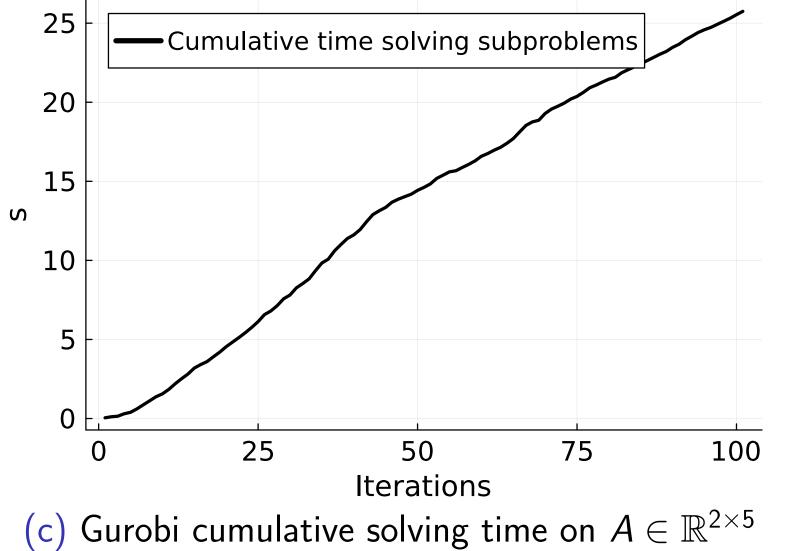
$$y \in \partial_{\mathbf{c}} f(x) \iff \mathbf{c}(x', y) - f(x') \le \mathbf{c}(x, y) - f(x)$$

 $\forall x' \in \mathbb{R}^n$

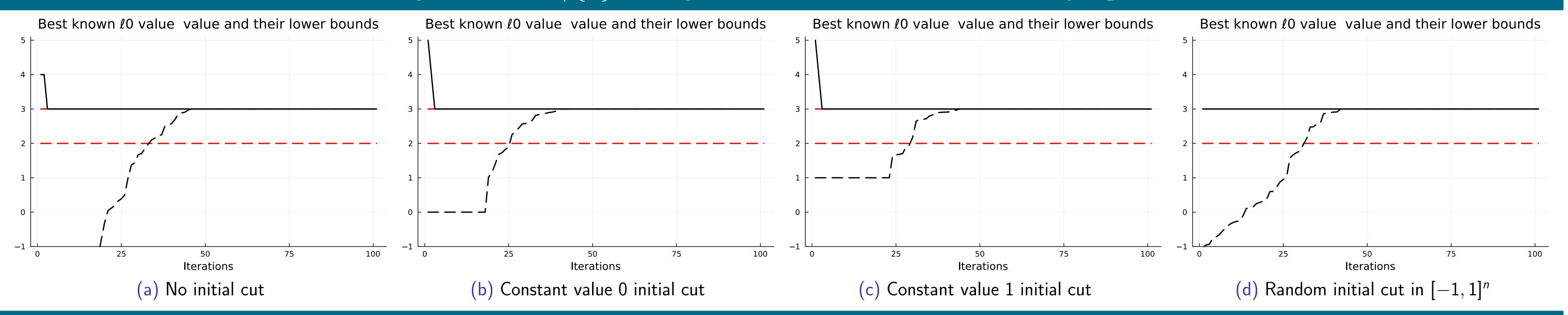


The subproblem of the Capra cutting plane method is a linear program on the sphere!





— Numerical results for minimizing ℓ_0 in ker $A \setminus \{0\}$ for a gaussian matrix $A \in \mathbb{R}^{2 \times 5}$ with varying initial cut



References

J. E. Kelley, Jr. The cutting-plane method for solving convex programs. Journal of the society for Industrial and Applied Mathematics, 8(4):703–712, 1960. D. Pallaschke and S. Rolewicz. Foundations of mathematics, 8(4):703–712, 1960.

A. Le Franc, J.-P. Chancelier, and M. De Lara. The capra-subdifferential of the I₀ pseudonorm. Optimization, volume 44 of Nonconvex Optimization, volume 44 o