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When using a primal-dual link between a score space and an output space to predict labels
are Fenchel-Young losses the only convex primal-dual losses that can be used at training time?
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Primal-dual loss at training time
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2 Associated loss L(y, (9) gy N i=1 > L(_y7 (9) diff. in 0 > PI’OpOSitiO" 8
—————— Lower bound for FP losses
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We define for a given > (USU3| ChOice) FY loss [2] Dataset | FY sparsemax FP sparsemax FY logistic FP logistic
coper lower [y 0) = O 00 — (v 0 Birds|  0.531 0.513 0.519 0.522
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QR — R U {+00) Flo\Y " 9,)269 y =Y Emotions|  0.317 0.318 0327  0.320
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Sparsemax Test performance measured in mean squared error (the lower the better)
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> FY sparsemax loss
. . sparsemax losses are comparable on losses are comparable on most
| v 0) = Zllv —OI12 — ZIIP~.(0) — 0|2 most datasets. datasets.
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LF[aQ] — Hy 5 H — ||PA/<( 5 ) 5 H wins on 2 datasets out of 11. datasets out of 11.

The <impl C d usi ti | ith 6 2 The two losses have similar 2 The FP logistic loss is computationally
> € simplex projection is computed using a sorting algorithm [ ] computational cost: the Fitzpatrick demanding, the FY logistic loss
Softmax sparsemax loss is a serious remains the best choice when we
> FY logistic loss contender to the sparsemax loss. wish to use the softmax.

ISTI
Conclusion

k
Losq:-(y,0) = log » exp(6;) + (y,logy) — (y,0)
=1
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same primal-dual link as Fenchel-Young loss.
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