

Learning with Fitzpatrick Losses

Seta Rakotomandimby, Jean-Philippe Chancelier Michel De Lara, Mathieu Blondel

When using a primal-dual link between a score space and an output space to predict labels are Fenchel-Young losses the only convex primal-dual losses that can be used at training time?

Primal-dual link at prediction time

Identity:
$$\nabla \Omega^*(\theta) = \theta$$

for
$$\Omega(y) = \frac{1}{2} \|y\|^2$$

Argmax:
$$\nabla \Omega^*(\theta) = \arg r$$

$$abla \Omega^*(heta) = rg \max_{y' \in \triangle^k} \langle y', heta
angle \ ext{ for } \Omega(y) = \iota_{\triangle^k}(y) := \left\{ egin{array}{l} 0 \, , & ext{ if } y \in \triangle^k \ +\infty \, , & ext{ otherwise} \end{array}
ight.$$

Sparsemax:
$$\nabla \Omega^*(\theta) = F$$

Sparsemax:
$$\nabla \Omega^*(\theta) = P_{\triangle^k}(\theta)$$
 for $\Omega(y) = \frac{1}{2} \|y\|^2 + \iota_{\triangle^k}(y)$

Softmax:
$$\nabla \Omega^*(\theta) =$$

nonconvex loss!

$$abla \Omega^*(heta) = rac{\exp(heta)}{\sum_{i=1}^k \exp(heta_i)}$$

for
$$\Omega(y) = \langle y, \log y \rangle + \iota_{\triangle^k}(y)$$

A Composing such link with the squared error usually results a

Substitute Using primal-dual losses will allow us to have convexity at the last layer at training time!

Primal-dual loss at training time

x ⁱ	MODEL	θ^{i}	LOSS L	$L(y^i, \theta^i)$
input	$g\in \mathcal{G}$	score		loss value

Simplex projection: $P_{\triangle^k}(y) = \arg\min \|y' - y\|^2$ Conjugate function: $\Omega^*(\theta) := \sup \langle y', \theta \rangle - \Omega(y')$

Minimization problem

- > Dataset $(x^i, y^i)_{i=1,...,N}$
- \gt Class of models ${\cal G}$
- \blacktriangleright Associated loss $L(y, \theta)$

$\min_{g \in \mathcal{G}} \frac{1}{N} \sum_{i=1}^{N} L(y^i, \widehat{g(x^i)})$

Desired properties

- $L(y,\theta) \geq 0$
- > $L(y, \theta)$ convex in θ
- > $L(y, \theta)$ diff. in θ

Fenchel-Young (FY) and Fitzpatrick (FP) losses

Which primal-dual losses L are we considering?

Representations [3] of the link

$$L(y,\theta)=0\Longleftrightarrow \nabla\Omega^*(\theta)=y$$

> (Usual choice) FY loss [2]

$$L_{\Omega\oplus\Omega^*}(y, heta)=\Omega(y)+\Omega^*(heta)-\langle y, heta
angle$$

function
$$\Omega: \mathbb{R}^n o \mathbb{R} \cup \{+\infty\}$$

> (NEW choice) FP loss

$$L_{F[\partial\Omega]}(y,\theta) = \sup_{(y',\theta')\in\partial\Omega} \langle y'-y,\theta-\theta' \rangle$$

Subdifferential: $(y', \theta') \in \partial \Omega \iff \langle y'' - y', \theta \rangle - \Omega(y') \leq \Omega(y'')$, $\forall y''$

Case of sparsemax and softmax

Sparsemax

> FY sparsemax loss

$$L_{\Omega \oplus \Omega^*}(y,\theta) = \frac{1}{2} ||y - \theta||^2 - \frac{1}{2} ||P_{\triangle^k}(\theta) - \theta||^2$$

> FP sparsemax loss

$$L_{F[\partial\Omega]} = \|y - \frac{y + \theta}{2}\|^2 - \|P_{\triangle^k}(\frac{y + \theta}{2}) - \frac{y + \theta}{2}\|^2$$

> The simplex projection is computed using a **sorting algorithm** [6].

Softmax

> FY logistic loss

$$L_{\Omega \oplus \Omega^*}(y, heta) = \log \sum_{i=1}^k \exp(heta_i) + \langle y, \log y \rangle - \langle y, heta
angle$$

> FP logistic loss

$$L_{F[\partial\Omega]} = \langle y^* - y, \theta - \log y^* \rangle$$

> Computation of $y^* = y^*(y, \theta)$

$$y_i^{\star} := \left\{ egin{array}{l} \mathrm{e}^{-\lambda^{\star}} \mathrm{e}^{ heta_i}, & \mathrm{if} \ y_i = 0 \ rac{y_i}{W(y_i \mathrm{e}^{\lambda^{\star} - heta_i})}, & \mathrm{if} \ y_i > 0 \end{array}
ight.$$

by the **bisection** of $\lambda^* = \lambda^*(y, \theta)$ which is the unique solution of

$$e^{-\lambda^{\star}} \sum_{i:y_i=0} e^{\theta_i} + \sum_{i:y_i>0} \frac{y_i}{W(y_i e^{-(\theta_i-\lambda^{\star})})} = 1$$

The nonanalytic **Lambert function** W is defined [5] as the unique nonnegative solution w of $u = we^w$, for $u \ge 0$.

Properties of Fitzpatrick losses

> FP losses are tighter than FY losses

$$0 \leq L_{F[\partial\Omega]}(y,\theta) \leq L_{\Omega \oplus \Omega^*}(y,\theta)$$

> Proposition 7

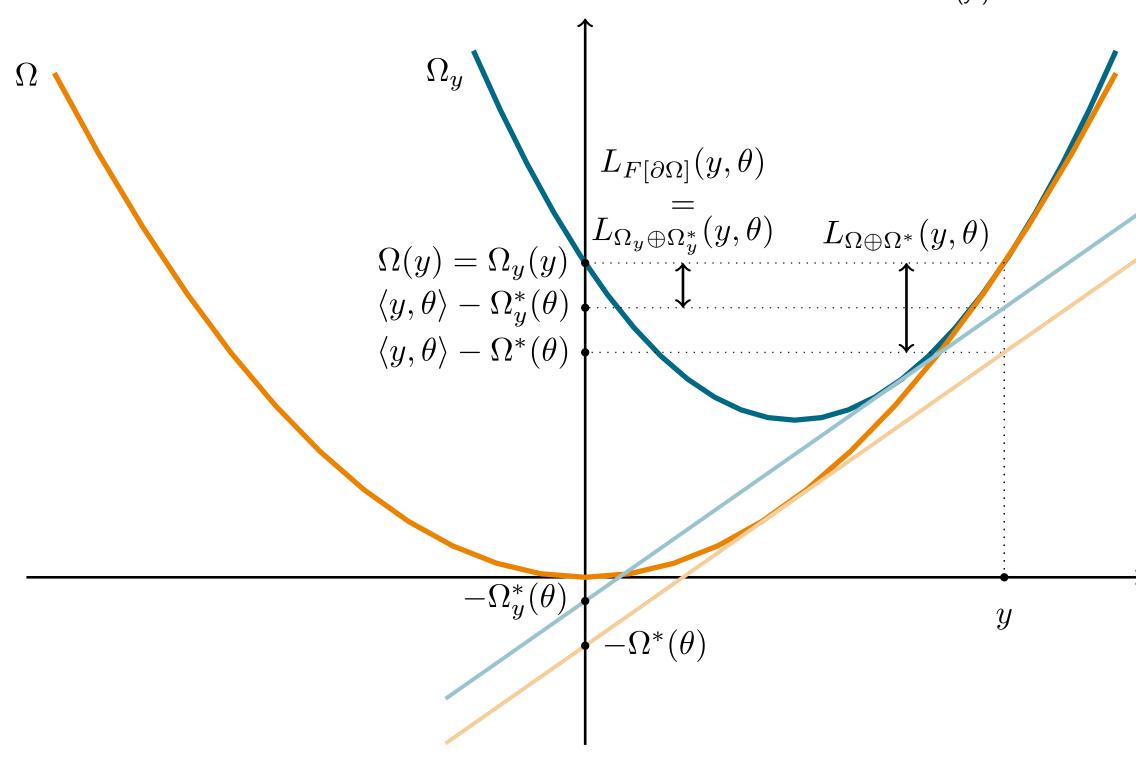
FP losses as target-dependent FY losses

for some proper lower semicontinuous convex function Ω

$$L_{F[\partial\Omega]}(y,\theta) = L_{\Omega_v \oplus \Omega_v^*}(y,\theta)$$

where the **target-dependent** Ω_v is defined by $\Omega_v(y') = \Omega(y') + D_{\Omega}(y,y')$

Generalized Bregman divergence: $D_{\Omega}(y,y') = \Omega(y) - \Omega(y') - \sup_{\theta' \in \partial \Omega(y')} \langle y - y', \theta' \rangle$,



Geometric illustration of Proposition 7 for $\Omega(y) = \frac{1}{2}||y'||_2^2$

> Proposition 8

Lower bound for FP losses

$$\langle y - y^*, \nabla^2 \Omega(y^*)(y - y^*) \rangle \leq L_{F[\partial \Omega]}(y, \theta)$$

where $y^* - y = y^*(y, \theta) - y = \nabla_{\theta} L_{F[\partial\Omega]}(y, \theta)$ and $\nabla^2 \Omega$ is the Hessian of Ω

Numerical experiments

Label proportion estimation

Dataset	FY sparsemax	FP sparsemax	FY logistic	FP logistic
Birds	0.531	0.513	0.519	0.522
Cal500	0.035	0.035	0.034	0.034
Delicious	0.051	0.052	0.056	0.055
Ecthr A	0.514	0.514	0.431	0.423
Emotions	0.317	0.318	0.327	0.320
Flags	0.186	0.188	0.184	0.187
Mediamill	0.191	0.203	0.207	0.220
Scene	0.363	0.355	0.344	0.368
Tmc	0.151	0.152	0.161	0.160
Unfair	0.149	0.148	0.157	0.158
Yeast	0.186	0.187	0.183	0.185

Test performance measured in mean squared error (the lower the better)

- > The FY sparsemax and the FP sparsemax losses are comparable on most datasets.
- > The FY sparsemax loss significantly wins on only 1 datasets out of 11 and the FP sparsemax loss significantly wins on 2 datasets out of 11.
- > The two losses have similar computational cost: the Fitzpatrick sparsemax loss is a serious contender to the sparsemax loss.
- > The FY logistic and the FP logistic losses are comparable on most datasets.
- > The FY logistic loss significantly wins on 2 datasets out of 11 and the FP logistic loss significantly wins on 2 datasets out of 11.
- ➤ The FP logistic loss is computationally demanding, the FY logistic loss remains the best choice when we wish to use the softmax.

Conclusion

We proposed new nonnegative convex losses from the maximal monotone **operator**theory [4, 3] that share the same primal-dual link as Fenchel-Young losses.

machine learning, pages 1614-1623. PMLR, 2016.

> The Fitzpatrick sparsemax loss is a serious contender to the sparsemax loss.

References

- H. Bauschke, D. McLaren, and H. Sendov. Fitzpatrick functions: Inequalities, examples, and remarks on a problem by S. Fitzpatrick. Journal of Convex
- Analysis, 13, 07 2005. M. Blondel, A. F. Martins, and V. Niculae. Learning with Fenchel-Young losses. Journal of Machine Learning Research, 21(35):1–69, 2020.
- R. S. Burachik and J. E. Martínez-Legaz. On Bregman-type distances for convex functions and maximally monotone operators. Set-Valued and
- Variational Analysis, 26:369–384, 2018. R. S. Burachik and B. F. Svaiter. Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Analysis, 10:297–316,
- 5(1):329–359, Dec 1996. A. Martins and R. Astudillo. From softmax to sparsemax: A sparse model of attention and multi-label classification. In *International conference on*

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W function. Advances in Computational Mathematics,