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Introduction

Duality is widely used in optimization

▶ linear programming
(Lagrangian duality, including optimal transport, etc.)

▶ convex programming
(Lagrangian duality in mathematical programming,
minimal cost flow on a graph etc.)

▶ conic programming, semidefinite programming, etc.
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Introduction

The perturbation-duality scheme (PDS)

▶ Introduced in [Rockafellar, 1974]

▶ Goal: systematically produce dual optimization problems
from a given optimization problem
by perturbation followed by conjugate duality
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Primal and dual problems in standard LP

dual problem︷ ︸︸ ︷
sup ⟨b | λ⟩

λ ∈ Rm

λTA ≤ k
≤︸︷︷︸

weak duality

primal problem︷ ︸︸ ︷
inf kT x

x ∈ Rn

Ax = b
x ≥ 0
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Strong duality for LP
Adapted from [Conforti, Cornuéjols, and Zambelli, 2014, Theorem 3.7,Proposition 3.9]

Theorem

Given a matrix A ∈ Rm×n and vectors k ∈ Rn, b ∈ Rm,
if
{
x ∈ Rn

∣∣Ax = b, x ≥ 0
}
̸= ∅ or

{
λ ∈ Rm

∣∣λTA ≤ k
}
̸= ∅,

(that is, if the primal or the dual problem is feasible)

then we have

sup ⟨b | λ⟩
λ ∈ Rm

λTA ≤ k
=︸︷︷︸

strong duality

inf kT x
x ∈ Rn

Ax = b
x ≥ 0
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Sketch of the proof
1. Introduce the Lagrangian L : Rn

+ × Rm → R by

L(x , λ) = kT x + ⟨b − Ax | λ⟩ , ∀x ∈ Rn
+, λ ∈ Rm

2. Use sup-inf inversion inequality to get weak duality

sup
λ∈Rm

inf
x∈Rn

+

L(x , λ)︸ ︷︷ ︸
dual problem

≤ inf
x∈Rn

+

sup
λ∈Rm

L(x , λ)︸ ︷︷ ︸
primal problem

3. Find a saddle-point
(
x , λ

)
∈ Rn

+ × Rm

L(x , λ) ≤ L(x , λ) ≤ L(x , λ) , ∀x ∈ Rn
+, λ ∈ Rm

to prove strong duality, i.e.

sup
λ∈Rm

inf
x∈Rn

+

L(x , λ)︸ ︷︷ ︸
dual problem

= inf
x∈Rn

+

sup
λ∈Rm

L(x , λ)︸ ︷︷ ︸
primal problem
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Now, let us deduce the previous duality results
from a perturbation duality scheme (PDS)
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Steps of the perturbation-duality scheme

[Rockafellar, 1974]

1. Perturb a minimization problem
with a perturbation (primal) variable
belonging to a vector space,
and a Rockafellian function

2. Pair the (primal) perturbation space with a dual space
by means of a bilinear form ⟨ | ⟩

3. Biconjugate the perturbation function, and get
▶ a dual problem
▶ weak duality

4. Deduce conditions for strong duality by means of
either global or local properties of the perturbation function
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Illustration of the scheme in Linear Programming (LP)

▶ Constraint matrix A ∈ Rm×n

▶ Cost vector k ∈ Rn

▶ Anchor b̄ ∈ Rm

Initial/original minimization problem

inf kT x
x ∈ Rn

Ax = b̄
x ≥ 0
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Step 1. Perturbation of the initial minimization problem

▶ Introduce a perturbation space, Rm,
and embed the original problem into a family of minimization
problems (more on the Rockafellian later)

▶ Introduce the perturbation function
φ : Rm → R = R ∪ {−∞}︸ ︷︷ ︸

unbounded

∪ {+∞}︸ ︷︷ ︸
unfeasible

∀b ∈ Rm , φ(b) = inf kT x
x ∈ Rn

Ax = b
x ≥ 0

▶ The value of the original problem is then φ(b̄)
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Example of perturbation function’s epigraph for LP

Let φ : R → R be defined as

∀b ∈ R , φ(b) = inf x1 + 2x2
x ∈ R2

x1 − x2 = b
x ≥ 0

Then φ(b) = max{−2b, b} , ∀b ∈ R

−1

1

b

φ(b)
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Step 2. Dual space, coupling and conjugate function

▶ Perturbation space: Rm — dual space: Rm (linear functions)

▶ Introduce the bilinear coupling

⟨ | ⟩ :

perturbation
space︷︸︸︷
Rm ×

dual space︷︸︸︷
Rm → R

▶ Deduce the conjugate function φ⋆ : Rm → R of the
perturbation function

∀λ ∈ Rm , φ⋆(λ) = sup
b∈Rm

{
⟨b | λ⟩ − φ(b)

}
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Conjugate function and Lagrangian

φ⋆(λ) = sup
b∈Rm

{
⟨b | λ⟩ − φ(b)

}
= sup

b∈Rm

{
⟨b | λ⟩ − inf

Ax=b
x≥0

kT x
}

= sup
b∈Rm

{
⟨b | λ⟩+ sup

Ax=b
x≥0

⟨−x | k⟩
}

= sup
x≥0

{
sup
Ax=b
b∈Rm

⟨b | λ⟩ − kT x
}

= sup
x≥0

{
⟨Ax | λ⟩ − kT x

}
=

〈
b̄ | λ

〉
− inf

x≥0

{
kT x +

〈
b̄ − Ax | λ

〉}︸ ︷︷ ︸
Lagrangian L(x ,λ)
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Step 3. Biconjugate and weak duality
▶ Biconjugate function φ⋆⋆′ : Rm → R

∀b ∈ Rm , φ⋆⋆′(b) = sup
λ∈Rm

{
⟨b | λ⟩ − φ⋆(λ)

}
▶ We obtain weak duality for all b ∈ Rm

sup ⟨b | λ⟩
λ ∈ Rm

λTA ≤ k︸ ︷︷ ︸
dual problem

= φ⋆⋆′(b) ≤ φ(b) =

inf kT x
x ∈ Rn

Ax = b
x ≥ 0

▶ At the anchor b̄

φ⋆⋆′(b̄) = sup
λ∈Rm

{〈
b̄ | λ

〉
− φ⋆(λ)︸ ︷︷ ︸

infx≥0 L(x ,λ)

}
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We have obtained the LP weak duality result
What about the LP strong duality result?
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Step 4. Conditions for strong duality

Proposition

Let A ∈ Rm×n and k ∈ Rn

If −∞ < φ(0), that is, the corresponding LP is bounded
then, for all b ∈ Rm,

(
sup ⟨b | λ⟩

λ ∈ Rm

λTA ≤ k
=

)
φ⋆⋆′(b) = φ(b)︸ ︷︷ ︸

strong duality

(
=

inf kT x
x ∈ Rn

Ax = b
x ≥ 0

)

Remark
This result is true even if b ∈ Rm is such that φ(b) = +∞,
meaning for any unfeasible LPs
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Proof of strong duality for LP. Sketch of the proof
adapted from [Rockafellar, 1974, p.24]

(a) We show that if the LP φ(0) is bounded,
then every feasible LP is bounded

−∞ < φ(0) =⇒ φ is proper

(b) We show that epi φ is a closed convex set
(by showing that epi φ is a polyhedron)

φ is a closed convex function

(c) We apply Fenchel-Moreau Theorem
to get strong duality

φ⋆⋆′ = φ
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Strong duality for LP. Step (a) Proper functions

Definition

Let f : Rm → R = R ∪ {−∞,+∞}
▶ dom f = {b ∈ Rm : f (b) < +∞}
▶ The function f is said to be proper

if dom f ̸= ∅ and −∞ < f (b) , ∀b ∈ Rm

Lemma
If −∞ < φ(0) (the corresponding LP is bounded)

then the value function φ is proper (all feasible LPs are bounded)

Idea of the proof

The recession cone of {x ∈ Rn : Ax = b}
is given by {r ∈ Rn : Ax = 0, r ≥ 0}
[Conforti, Cornuéjols, and Zambelli, 2014, Proposition 3.15]
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Strong duality for LP. Step (b) Closed convex epigraph
Definition

Let f : Rm → R = R ∪ {−∞,+∞}
The epigraph of the function f is defined by

epi f =
{
(b, t) ∈ Rm × R : f (b) ≤ t

}
Proposition

Let A ∈ Rm×n and k ∈ Rn define
the value function φ : Rm → R by

∀b ∈ Rm , φ(b) = inf kT x
x ∈ Rn

Ax = b
x ≥ 0

Then epi φ is a polyhedron
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Proof that epi φ is a polyhedron
A ∈ Rm×n, k ∈ Rn

Let b ∈ Rm, we assume that −∞ < φ(b)

φ(b) ≤ t

⇐⇒ inf
x∈Rn

Ax=b
x≥0

kT x ≤ t

⇐⇒ min
x∈Rn

Ax=b
x≥0

kT x ≤ t (as bounded feasible LPs are attained)

⇐⇒ ∃x ∈ Rn s.t. Ax = b , x ≥ 0 , kT x − t ≤ 0

⇐⇒ epiφ = π(b,t)

{
(b, t, x) ∈ Rm × R× Rn :


Ax = b
x ≥ 0
kT x − t ≤ 0

}
Thus epiφ is the projection of a polyhedron
So, epiφ is a polyhedron
[Rockafellar, 1970, Theorem 19.3]
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Strong duality for LP. Step (c) Fenchel-Moreau theorem

Definition

A function f : Rm → R is said to be closed convex [Rockafellar, 1974]

if EITHER [f is proper AND epi f is a closed convex set]
OR f ≡ +∞ OR f ≡ −∞

Theorem

[Fenchel-Moreau Theorem]
A function f : Rm → R is closed convex if and only if f ⋆⋆

′
= f

So we have strong duality

φ⋆⋆′ = φ︸︷︷︸
as Steps (a) and (b) imply
that φ is a closed function
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About closed convex functions: the case of valley functions

Definition

Let C ⊂ Rn be a closed convex set
Let f : Rn → R be a function
We say that f is a valley function if

f (u) =

{
−∞ if u ∈ C
+∞ otherwise

Remark
Valley functions have a closed convex epigraph
BUT are not closed convex functions
(except the cases f ≡ −∞ or f ≡ +∞)
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Example when strong duality is not achieved for LP

−∞ =


sup λ1

λ ∈ R2

λ1 + λ2 ≤ −1
−λ1 − λ2 ≤ 0



= φ⋆⋆′
(
(1, 0)

)
< φ

(
(1, 0)

)
=


inf −x1

x ∈ R2

x1 − x2 = 1
x1 − x2 = 0

x ≥ 0

 = +∞
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Summary of the perturbation-duality scheme for LP
[Rockafellar, 1974]

1. We perturb a minimization problem

∀b ∈ Rm , φ(b) = inf kT x
x ∈ Rn

Ax = b
x ≥ 0

2. We pair the primal space Rm and a dual space Rm

⟨ | ⟩ : Rm × Rm → R

3. We biconjugate the perturbation function φ(
sup ⟨b | λ⟩

λ ∈ Rm

λTA ≤ k
=

)
φ⋆⋆′(b) ≤ φ(b) , ∀b ∈ Rm︸ ︷︷ ︸

weak duality is guaranteed

4. Under suitable assumptions, strong duality by polyhedral
property of the epigraph of the perturbation function
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Indicator function of a subset

For any subset X ⊂ X , its indicator function ιX is

ιX (x) =

{
0 if x ∈ X

+∞ if x ̸∈ X
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Summary (bis) of the perturbation-duality scheme for LP

1. We perturb a minimization problem

φ(b) = inf
x∈Rn

R(x , b) , ∀b ∈ Rm

where the Rockafellian R : Rn × Rm → R is defined
by R(x , b) = kT x + ιRn

+
(x) + ι{0}(Ax − b)

2. We pair the primal space Rm and a dual space Rm

⟨ | ⟩ : Rm × Rm → R

3. We biconjugate the perturbation function φ(
sup ⟨b | λ⟩

λ ∈ Rm

λTA ≤ k
=

)
φ⋆⋆′(b) ≤ φ(b) , ∀b ∈ Rm︸ ︷︷ ︸

weak duality is guaranteed

4. Under suitable assumptions, strong duality by polyhedral
property of the epigraph of the perturbation function
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The Fenchel conjugacy

Definition

Two vector spaces U and V, paired by a bilinear form ⟨ , ⟩
(in the sense of convex analysis),

give rise to the classic Fenchel conjugacy between RU
and RV

With any function f : U → R, we associate
the function f ⋆ : V → R defined by

f ⋆(v) = sup
u∈U

{
⟨u, v⟩ − f (u)

}
, ∀v ∈ V
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The biconjugate function is a minorant of the function

Definition

Let f : U → R be a function
Its biconjugate f ⋆⋆

′
: U → R is defined by

f ⋆⋆
′
(u) = sup

v∈V

{
⟨u, v⟩ − f ⋆(v)

}

The inequality below is instrumental in obtaining weak duality

Proposition

For any function f : U → R, we have that

f ⋆⋆
′ ≤ f
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Fenchel-Moreau Theorem

The equality below is instrumental in obtaining strong duality

Theorem

[Fenchel-Moreau]
The function f : U → R is closed convex if and only if f ⋆⋆

′
= f
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Moreau-Rockafellar subdifferential

Definition

Let f : U → R be a function
Its subdifferential ∂f (u) ⊂ V at any u ∈ U such that f (u) ∈ R,
is defined by

v ∈ ∂f (u) ⇐⇒ ⟨u′, v⟩ − f (u′) ≤ ⟨u, v⟩ − f (u) , ∀u′ ∈ U
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Steps of the perturbation-duality scheme

[Rockafellar, 1974]

1. Perturb a minimization problem
with a perturbation (primal) variable
belonging to a vector space,
and a Rockafellian function

2. Pair the (primal) perturbation space with a dual space
by means of a bilinear form ⟨ , ⟩

3. Biconjugate the perturbation function, and get
▶ a dual problem
▶ weak duality

4. Deduce conditions for strong duality by means of
either global or local properties of the perturbation function
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Perturbation duality scheme [Rockafellar, 1974]

sets optimization primal pairing dual

set X space U U ⟨ , ⟩↔ V space V
variables decision perturbation ⟨u, v⟩ sensitivity

x ∈ X u ∈ U ∈ R v ∈ V
bivariate Rockafellian Lagrangian

functions R : X × U → R L : X × V → R
definition L(x , v) =

infu∈U
{
R(x , u)− ⟨u, v⟩

}
property −L(x , ·) =

(
R(x , ·)

)⋆
property −L(x , ·) is ⋆′-convex

(hence L(x , ·) is concave usc)

univariate perturbation function dual function

functions φ : U → R ψ : V → R
definition φ(u) = infx∈X R(x , u) ψ(v) = infx∈X L(x , v)
property −ψ = φ⋆
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Weak duality
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Perturbation/Rockafellian (Step 1)

Data: set X , function f : X → R and

original minimization problem inf
x∈X

f (x)

▶ Embedding/perturbation scheme given by a vector space U ,
and a Rockafellian R : X × U → R such that

f (x) = R(x , 0) , ∀x ∈ X

▶ The perturbation function φ : U → R is defined by

φ(u) = inf
x∈X

R(x , u)

original minimization problem φ(0) = inf
x∈X

f (x)
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Duality/Fenchel conjugacy (Steps 2,3)

▶ Dual vector space V paired to U by a bilinear form ⟨ , ⟩

We obtain weak duality

φ⋆⋆′(0) =

dual problem︷ ︸︸ ︷
sup
v∈V

{
−φ⋆(v)

}
≤
φ(0) = inf

x∈X
f (x)︸ ︷︷ ︸

original problem
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Weak duality and Lagrangian
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Lagrangian

▶ Lagrangian L : X × V → R defined by

L(x , v) = inf
u∈U

{
R(x , u)︸ ︷︷ ︸

Rockafellian

−⟨u, v⟩
}
, ∀(x , v) ∈ X × V

▶ As L(x , v) ≤ R(x , 0)− ⟨0, v⟩ = f (x), we get that

sup
v∈V

L(x , v) ≤ f (x)

hence that

original minimization problem inf
x∈X

sup
v∈V

L(x , v) ≤ inf
x∈X

f (x)
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Dual function
▶ The dual function ψ : V → R is defined by

ψ(v) = inf
x∈X

L(x , v) , ∀v ∈ V

▶ and the dual problem is

φ⋆⋆′(0) = sup
v∈V

{
⟨0, v⟩ − φ⋆(v)

}
=

dual problem︷ ︸︸ ︷
sup
v∈V

ψ(v)

as − φ⋆(v) = −
(
inf
x∈X

R(x , ·)
)⋆
(v)

= − sup
x∈X

{
sup
u∈U

{
⟨u, v⟩ − R(x , u)

}}
= − sup

x∈X

{
− inf

u∈U

{
−⟨u, v⟩+R(x , u)

}
︸ ︷︷ ︸

Lagrangian

}

= inf
x∈X

L(x , v) = ψ(v)
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Weak duality with Lagrangian

φ⋆⋆′(0)

= sup
v∈V

{
−φ⋆(v)

}
= sup

v∈V
inf
x∈X

L(x , v)︸ ︷︷ ︸
dual problem

≤
inf
x∈X

sup
v∈V

L(x , v)

≤ inf
x∈X

f (x)

=φ(0)
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Strong duality
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Strong duality

dual problem︷ ︸︸ ︷
φ⋆⋆′(0) ≤︸︷︷︸

weak duality

original problem︷︸︸︷
φ(0)

Definition

Strong duality ⇐⇒ φ⋆⋆′(0) = φ(0) ⇐⇒ φ is ⋆ -convex at 0
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Paths to strong duality in the convex case

▶ Suppose that the Rockafellian R : X × U → R
is a jointly convex function

▶ Then, the perturbation function φ : U → R
is convex as the marginal function φ(u) = infx∈X R(x , u)

▶ If, in addition,
▶ either (global property) the function φ

is proper and lower semicontinuous,
and then φ⋆⋆′

= φ by the Fenchel-Moreau Theorem,
▶ or (local property) the subdifferential ∂φ(0) ̸= ∅,

and then the function φ is ⋆-convex at 0,

and we get strong duality φ⋆⋆′(0)︸ ︷︷ ︸
dual problem

= φ(0)︸︷︷︸
original problem
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Lagrangian duality (the case of inequality constraints)
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Classic Lagrangian duality
(the case of inequality constraints)

▶ Optimization set X
▶ Objective function f : X →]−∞,+∞]

▶ Mapping θ = (θ1, . . . , θm) : X → Rm, and u ∈ Rm

We consider the optimization problem

min
θ(x)≤u

f (x) = min
θ1(x)≤u1

...
θm(x)≤um

f (x)
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Perturbation and Rockafellian

▶ Perturbation space U = Rm

▶ Rockafellian R : X × Rm → R

R(x , u) = f (x) + ι{θ(x)−u≤u} = f (x) +
m∑
j=1

ι{θj (x)−uj≤uj}
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Duality, Lagrangian and dual function

▶ Dual space V = Rm

▶ We deduce the Lagrangian L : X × Rm → R

L(x , v) =
(
f (x)∔

(
−ιRm

+
(v)

))
+ ⟨θ(x)− u, v⟩

=
(
f (x)∔

(
−ιRm

+
(v)

))
+

m∑
j=1

vj
(
θj(x)− u

)
▶ We deduce the dual function ψ : Rm → R

ψ(v) = inf
x∈X

L(x , v) =
(
−ιRm

+
(v)

)
∔ inf

x∈X

{
f (x) +

m∑
j=1

vj
(
θj(x)− u

)}
which is concave upper semicontinuous,
as the supremum of affine functions
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Paths to strong duality in the convex case

▶ Suppose that
▶ the optimization set X is a vector space
▶ the objective function f : X →]−∞,+∞] is convex
▶ each component of the mapping θ = (θ1, . . . , θm) : X → Rm

is a convex function

▶ Then, the perturbation function φ : Rm → R
is a convex function as the marginal

φ(u) = inf
x∈X

{
f (x) +

m∑
j=1

vj
(
θj(x)− u

)}
▶ If, in addition,

▶ either the function φ is proper and lower semicontinuous
▶ or its subdifferential ∂φ(0) ̸= ∅

then we get strong duality
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Fenchel-Rockafellar duality
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The Fenchel-Rockafellar dual problem

Proposition

adapted from [Rockafellar, 1970, Corollary 31.2.1]

Let f , g : Rn → R be proper convex functions
and let L : Rn → Rm be a linear mapping

sup
v∈Rm

{−g⋆(v)− f ⋆(−LT v)} ≤ inf
x∈Rn

{f (x) + g(Lx)}

Furthermore, equality is achieved if either

▶ ∃x ∈ ri(domf ) s.t. Lx ∈ ri(domg)

▶ ∃v ∈ ri(domg⋆) s.t. LT v ∈ ri(domf ⋆)
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Perturbation and Rockafellian

▶ Perturbation space U = Rm

▶ Rockafellian R : Rn × Rm → R

R(x , u) = f (x) + g
(
Lx + u

)
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Duality and Lagrangian and dual function

▶ Dual space V = Rm

▶ We deduce the Lagrangian L : X × Rm → R

L(x , v) = ⟨x , LT v⟩+ f (x)− g⋆(v)

▶ We deduce the dual function ψ : Rm → R

ψ(v) = inf
x∈X

L(x , v) = −g⋆(v)∔
(
− sup

x∈X

{
⟨x , −LT v⟩ − f (x)

}
︸ ︷︷ ︸

f ⋆(−LT v)

)
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Application to regularized problems

For a linear mapping L : Rn → Rm and a proper convex function
f : Rm → R and suitable assumptions

sup
v∈Rm

−
∥∥∥LT v∥∥∥2 − f ⋆(v) = inf

x∈Rn
f (Lx) +

1

2
∥x∥2

Can be useful for computation if m < n and f ⋆ easy to compute
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Semidefinite programming dual problem
adapted from [Calafiore and El Ghaoui, 2014, Chapter 11]

Let Sn be the set of n × n symmetric matrices
Let Sn+ ⊂ Sn be the set of n × n semidefinite matrices

Proposition

Let K ,A1, . . . ,Am ∈ Sn and b ∈ Rm

Then, we have

sup
v∈Rm

K−
∑m

j=1 vjAj⪰0

⟨b, v⟩ ≤ inf
X∈Sn

trace(AjX )=bj , j=1,...,m
X⪰0

trace(KX )

Furthermore, equality is achieved
if some Slater’s condition is satisfied
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Perturbation and Rockafellian

▶ Perturbation space U = Rm

▶ Rockafellian R : Sn × Rm → R

R(x , u) = trace(KX ) + ιX⪰0 +
m∑
j=1

ιtrace(AjX )=bj+uj

where u =

u1
...
um
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Duality and Lagrangian and dual function

▶ Dual space V = Rm

▶ We deduce the Lagrangian L : X × Rm → R

L(X , v) = ⟨b, v⟩+ trace
(
(K −

m∑
j=1

vjAj)X
)

▶ We deduce the dual function ψ : Rm → R

ψ(v) = inf
x∈X

L(x , v) = ⟨b, v⟩ − ιK−
∑m

j=1 vjAj⪰0
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Introducing generalized convexity

Fenchel conjugate c-conjugate
f ⋆(v) = sup

u∈Rm
⟨u, v⟩ − f (u) g c(v) = sup

u∈U
c(u, v) ·+

(
−g(u)

)
Fenchel biconjugate c-biconjugate

f ⋆⋆
′
(u) = sup

v∈Rm
⟨u, v⟩ − f ⋆(v) g cc ′(u) = sup

v∈V
c(u, v) ·+

(
−g c(v)

)
⋆− convex functions c-convex functions

⇐⇒ f ⋆⋆
′
= f ⇐⇒ g cc ′ = g

with the Moreau lower and upper additions

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞
(+∞)∔ (−∞) = (−∞)∔ (+∞) = +∞
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Generalized perturbation-duality scheme [Balder, 1977]

sets optimization primal coupling dual

set X set U U c↔ V set V
variables decision perturbation c(u, v) sensitivity

x ∈ X u ∈ U ∈ R v ∈ V
bivariate Rockafellian Lagrangian

functions R : X × U → R L : X × V → R
definition L(x , v) =

infu∈U

{
R(x , u)∔

(
−c(u, v)

)}
property −L(x , ·) =

(
R(x , ·)

)c
property −L(x , ·) is c ′-convex
univariate perturbation function dual function

functions φ : U → R ψ : V → R
definition φ(u) = infx∈X R(x , u) ψ(v) = infx∈X L(x , v)
property −ψ = φc

▶ Anchor u ∈ U and dual maximization problem (weak duality)
φcc ′(u) = supv∈V

{
c(u, v) ·+ ψ(v)

}
≤ infx∈X f (x) = φ(u)

▶ Strong duality iff φ is c-convex at u iff φcc ′(u) = φ(u)
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Case of evaluation couplings
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Case of evaluation couplings (developped later)

▶ Given a primal set U and a function set F ⊂ {F : U → R},
the evaluation coupling cF : U × F → R is defined by

cF (u,F ) = F (u) , ∀u ∈ U ,F ∈ F

▶ For a given (perturbation) function φ : U → R,
weak duality is always achieved

φcFcF
′ ≤ φ

▶ Sufficient condition for strong duality

φ ∈ F =⇒ φcFcF
′
= φ

▶ Two trivial cases of strong duality

1. F = {F : U → R} = RU

2. F = {φ}
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Pure integer linear program in standard form

inf kTx
x ∈ Zn

Ax = b
x ≥ 0
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Usual continuous dual in PILP

dual (continuous) problem︷ ︸︸ ︷
sup ⟨b | λ⟩

λ ∈ Rm

ATλ ≤ k
≤︸︷︷︸

weak duality

primal (integer) problem︷ ︸︸ ︷
inf kT x

x ∈ Zn

Ax = b
x ≥ 0

▶ Right-hand side b perturbation and scalar product coupling

▶ Usually strong duality is not achieved

▶ Can we design tighter dual problems?
(Useful for Branch-and-bound like methods)
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Changing the perturbation/changing the coupling

φ(b) =
inf kT x

x ∈ Zn
+

Ax = b

⟨ , ⟩ : Rm × Rm → R

φ(b) = . . .

⟨ , ⟩ : Rm × Rm → R

φ(b) =
inf kT x

x ∈ Zn
+

Ax = b

c : Rm ×F → R
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(Geoffrion) Lagrangian relaxation [Geoffrion, 1974]
1. We partially perturb

∀b1 ∈ Rm1 , φ(b1) = inf
x

kT x

A1x = b1

A2x = b2

x ≥ 0
x ∈ Zn

2. We pair the primal space Rm1 and a dual space Rm1

⟨ , ⟩ : Rm1 × Rm1 → R

3. We biconjugate the perturbation function φ

φ⋆⋆′(b1) = sup
λ∈Rm1

inf kT x +
〈
b1 − A1x | λ

〉
A2x = b2

x ≥ 0
x ∈ Zn︸ ︷︷ ︸

g(λ)
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Example of perturbation function’s epigraph for LP

Example

Let φ : R → R be defined as

φ(b) = inf x1 + x2 + x3
x ∈ R3

x1 + x2 + 3x3 = 1
x1 + 2x2 + 4x3 = b

x ≥ 0

Then φ(b) = max{3− 2b, 1, b − 1} , ∀b ∈ R

1 2

1

2

b

φ(b)
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Condition for tighter gap than continuous dual problem
adapted from [Conforti, Cornuéjols, and Zambelli, 2014, Corollary 8.4.]

Proposition

If A2 and b2 are rational then

sup ⟨b | λ⟩
λ ∈ Rm

ATλ ≤ k
≤ φ⋆⋆′(b1) = sup

λ∈Rm1

g(λ)

where

g(λ) =

inf kT x +
〈
b1 − A1x | λ

〉
A2x = b2

x ≥ 0
x ∈ Zn

and A =

(
A1

A2

)
, b =

(
b1

b2

)
, m = m1 +m2
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Evaluation coupling

Definition

Let F ⊂ {F : Rm → R} be a set of functions
We call cF : Rm ×F → R defined by

cF (b,F ) = F (b) , ∀b ∈ Rm,∀F ∈ F

the evaluation coupling of F

Remark
▶ Here the dual variables are functions

▶ If F =
{
F : Rm → R

∣∣ is linear}, then cF = ⟨ | ⟩
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Resulting evaluation dual problem
also see [Tind and Wolsey, 1981, Sect. 6]

Consider the perturbation function defined by

∀b ∈ Rm , φ(b) = inf
x

kT x

Ax = b
x ≥ 0
x ∈ Zn

Proposition

Let F ⊂ {F : Rm → R} be a set of functions
Then, for any b ∈ Rm

φcFcF
′
(b) = sup

F∈F

{
F (b) ·+ inf

x∈Zn
+

{
kT x − F (Ax)

}}
φcFcF

′
(b) ≤︸︷︷︸

weak duality

φ(b)
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Proof. Compute first conjugate

φc(F ) = sup
b∈Rm

{
c(b,F ) ·+

(
−φ(b)

)}
= sup

b∈Rm

{
c(b,F ) ·+

(
− inf

x∈Zn
+

Ax=b

kT x
)}

= sup
b∈Rm

{
c(b,F ) ·+ sup

x∈Zn
+

Ax=b

−kT x
}

= sup
x∈Zn

+

{
−kT x + sup

b∈Rm

Ax=b

c(b,F )
}

= sup
x∈Zn

+

{
−kT x + c(Ax ,F )

}
= − inf

x∈Zn
+

{
kT x − F (Ax)︸ ︷︷ ︸
Lagrangian L(x ,F )

}
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Revisiting the Fenchel coupling with evaluation coupling

▶ Bilinear coupling ⟨ | ⟩ :

perturbation
space︷︸︸︷
Rm ×

dual space︷︸︸︷
Rm → R

▶ Rm can be identified to the functional
space Λ = {F : Rm → R|F is linear}

λ ∈ Rm ↔ F ∈ Λ

⟨b | λ⟩ ↔ cΛ(b,F )

▶ Thus, the resulting dual problem

φcΛcΛ
′
(b) = sup

λ∈Rm

{
⟨b | λ⟩+ inf

x∈Zn
+

{
kT x − ⟨Ax | λ⟩

}
︸ ︷︷ ︸

ι
ATλ≤k

}

=
sup ⟨b | λ⟩

λ ∈ Rm

ATλ ≤ k
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Inclusion of functional sets

Consider the perturbation function defined by

∀b ∈ Rm , φ(b) = inf
x

kT x

Ax = b
x ≥ 0
x ∈ Zn

Proposition

If F1 ⊂ . . . ⊂ FJ ⊂ {F : Rm → R}, then

φcF1cF1
′ ≤ . . . ≤ φcFJ cFJ

′ ≤ φ

The larger the set of dual functions, the tighter the gap!
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Characterization of strong duality for evaluation coupling

Proposition

[Tind and Wolsey, 1981, Proposition 6.8]

Let F ⊂ {F : Rm → R} be a set of functions and f : Rm → R
Then

f cFcF
′
= f ⇐⇒ ∃{fi}i∈I ⊂ F s.t. f = sup

i∈I
fi

Remark
Cases when the equality is trivially true

▶ F is too “general”: F = {F : Rm → R}
▶ F is too “specific”: F = {f }
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Example of perturbation function’s epigraph for PILP

Example

Let φ : R → R be defined as

∀b ∈ R , φ(b) = inf x1 + 2x2
x ∈ Z2

x1 − x2 = b
x ≥ 0

Then φ coincides on its domain with
φ̃(b) = max{−2b, ⌈3b⌉ − 2b} , ∀b ∈ R

−1

1

b

φ̃(b)

87



Summary of the perturbation-duality scheme for PILP
1. We perturb a minimization problem

∀b ∈ Rm , φ(b) = inf
x

kT x

Ax = b
x ∈ Zn

+

2. We pair the primal space Rm and a function set F

cF : Rm ×F → R
cF (b,F ) = F (b)

3. We biconjugate the perturbation function φ

weak duality is guaranteed︷ ︸︸ ︷
φcc ′(b) ≤ φ(b) , ∀b ∈ Rm

φcc ′(b) = sup
F∈F

{
F (b) ·+ inf

x∈Zn
+

{
kT x − F (Ax)

}}
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Strong duality for the subadditive dual problem

Let S be the set of subadditive functions

S = {F : Rm → R s.t. F (b1 + b2) ≤ F (b1)∔ F (b2) , ∀b1, b2}

(−∞) ∔ (+∞) = (+∞) ∔ (−∞) = +∞

Proposition

Let A ∈ Rm×n and k ∈ Rn

Let cS : Rm × S → R be the evaluation coupling of S
Then, for all b ∈ Rm

φcScS
′
(b) = φ(b)

Proof: φ is subadditive
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Proof of subadditive strong duality. φ is subadditive
(i) Let b1, b2 ∈ Rm

(ii) ▶ Assume there are x1, x2 ∈ Zn
+ s.t.

Ax1 = b1 , Ax2 = b2

Then A
(
x1 + x2

)
= b1 + b2

▶ For all such x1, x2 and by definition of φ

φ(b1 + b2) ≤
〈
k | x1 + x2

〉
=

〈
k | x1

〉
+
〈
k | x2

〉
▶ Going to the infimum in x1, then in x2

φ(b1 + b2) ≤ φ(b1) + φ(b2)

(iii) If there is no such x1, x2 ∈ Zn
+

Then φ(b1) = +∞ or φ(b2) = +∞
Thus, by definition of ∔

φ(b1 + b2) ≤ φ(b1)∔ φ(b2)
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Previous work on PILP duality
▶ Surveys of previous works

[Tind and Wolsey, 1981], [Güzelsoy, Ralphs, and Cochran,
2010]

▶ Some pioneer papers on strong duality in the rational case
(when A ∈ Qm×n, k ∈ Qn)
[Johnson, 1973], [Jeroslow, 1979],[Wolsey, 1981], [Blair and
Jeroslow, 1982]

▶ Computation of optimal dual functions
[Wolsey, 1981], [Klabjan, 2007]

Subadditive dual problem in [Jeroslow, 1979]

sup
F :Rm→R

F (b̄)

F (Aj) ≤ kj
F (0) ≤ 0

F is subadditive
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Somewhere in between the linear and the subadditive

Λ︸︷︷︸
linear

functions

⊂ C ⊂

subadditive

functions︷︸︸︷
S
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Definition of Chvátal functions

Definition

The class of Chvátal functions C
is the smallest class of functions F ⊂ {F : Rm → R} such that

b ∈ Rm 7→ ⟨b | λ⟩ ∈ F , ∀λ ∈ Qm (linear functions)

αF1 + βF2 ∈ F , ∀F1,F2 ∈ F , α, β ∈ Q+

(conic combination)

⌈F ⌉ ∈ F , ∀F ∈ F (round-up)

Examples in 1D

▶ b 7→ 3
4b

▶ b 7→ ⌈b⌉
▶ b 7→ 3

4b + 7
10⌈b⌉

▶ b 7→ 15b + 39
22

⌈
3
4b + 7

10⌈b⌉
⌉
+ ⌈16b⌉
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Strong duality with Chvátal functions
adapted from [Blair and Jeroslow, 1982]

We define a perturbation function

∀b ∈ Rm , φ(b) = inf
x

kT x

Ax = b
x ∈ Zn

+

Proposition

We remind that cC is the evaluation coupling of the Chvátal functions
If A ∈ Qm×n and k ∈ Qn then

φcCcC
′
(b) = φ(b) , ∀b ∈ domφ

Remark
The perturbation function φ is defined on Rm but domφ ⊂ Qm
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Steps of the perturbation-duality scheme

[Rockafellar, 1974]

1. Perturb a minimization problem
with a perturbation (primal) variable
belonging to a vector space,
and a Rockafellian function

2. Pair the (primal) perturbation space with a dual space
by means of a bilinear form ⟨ | ⟩

3. Biconjugate the perturbation function, and get
▶ a dual problem
▶ weak duality

4. Deduce conditions for strong duality by means of
either global or local properties of the perturbation function
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Branching out: rank restricted Chvàtal functions
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Rank restricted Chvàtal functions

Let F ∈ C be a Chvàtal function
Definition

The rank of F is defined unformally as
the smallest number of ⌈·⌉ needed to encode F
We denote by Cr ⊂ C the Chvàtal function
of rank not greater than r ∈ N

▶ Inclusion of function sets

C0︸︷︷︸
linear functions
with rational λ

⊂ C1 ⊂ · · · ⊂ Cm ⊂ · · · ⊂ S

▶ Weak duality chain

φcC0cC0
′ ≤ φcC1cC1

′ ≤ . . . φcCr cCr
′ ≤ · · · ≤ φcScS

′ ≤ φ
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Example of partially perturbed restricted Chvàtal scheme
▶ We define a perturbation function

∀b ∈ Rm1 , φ(b1) = inf
x

kT x

A1x = b1

A2x = b2

x ≥ 0
x ∈ Zn

▶ We define a coupling between primal and dual space

c : Rm1 ×Qm1 ×Q+ → R (for given β ∈ Qm1 )

c(b1,
(
λ, α

)
) = λTb1 + α

⌈
βTb1

⌉
,

∀b1 ∈ Rm1 , ∀(λ, α) ∈ Qm1 ×Q+

▶ We biconjugate the perturbation functions

φcc ′(b1) ≤ φ(b1) , ∀b ∈ Rm1︸ ︷︷ ︸
weak duality
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Resulting dual problems yields a tighter gap

φcc ′(b) =

sup
(λ,α)∈Qm×Q+

{
λTb1 + α

⌈
βTb1

⌉
+ inf

A2x=b2
x≥0
x∈Zn

{
kT x − λTA1x + α

⌈
βTA1x

⌉}}
︸ ︷︷ ︸

g̃(λ,α)

We have a tighter gap

sup
λ∈Qm1

g(λ)︸ ︷︷ ︸
Lagrangian relaxation

≤ sup
(λ,α)∈Qm1×Q+

g̃(λ, α) ≤ φ(b)︸︷︷︸
original problem
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Thank you for your attention !
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