Perturbation-Duality Scheme in Combinatorial Optimization and Algorithms in Generalized Convexity

Seta Rakotomandimby, Michel De Lara, Jean-Philippe Chancelier

Introduction

Overview of generalized convexity and duality

Perturbation-duality scheme applied to PILP

Cutting plane methods for sparse optimization

Conclusion

Annexes

First part: Perturbation-duality scheme in combinatorial optimization

- Rewriting of Jeroslow's result Perturbation-duality scheme
+

generalized conjugacy

- Linking

> Perturbation-duality scheme and
> "Lagrangian" relaxation

- Proposing a quasi-affine dual problems for Pure Integer Linear Programming

Second part: Cutting plane methods for sparse optimization

- Implementation of cutting plane methods using
- results on CAPRA-convexity of ℓ_{0}
[Chancelier and De Lara, 2020, 2021]
- and the calculation of its CAPRA-subdifferentials [Le Franc, 2021]
- Numerical tests on instances we generated in low dimension

Outline

Introduction

Overview of generalized convexity and duality

Perturbation-duality scheme applied to PILP

Cutting plane methods for sparse optimization

Conclusion

Annexes

Outline

Introduction
Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar
Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling
Branching out
Cutting plane methods for sparse optimization
Conclusion
Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

A closed convex set

Usual definition of convexity by the interior

Equivalent definition for closed-convexity by the exterior

Equivalent definition for closed-convexity by the exterior

Equivalent definition for closed-convexity by the exterior

Approximation by finite number of cuts

Epigraph of a closed-convex function

$y=x^{2}$

Epigraph of a closed-convex function

$$
y=x^{2}
$$

The epigraph is above its tangents

$$
y=x^{2}
$$

Approximation by a finite number of cuts
$y=x^{2}$

Example of a nonconvex set

Some tangents won't stay outside!

Generalized convexity: we change the shape of the tangents!

Generalized convexity: we change the shape of the tangents!

$$
T(x)=\langle x, \alpha\rangle+\beta, \forall x \in \mathbb{R}^{n}
$$

Generalized convexity: we change the shape of the tangents!

$$
T(x)=\langle x, \alpha\rangle+\beta, \forall x \in \mathbb{R}^{n}
$$

Scalar product $\langle\cdot, \cdot\rangle\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n}$ Slope: $\alpha \in \mathbb{R}^{n}$ Intercept: $\beta \in \mathbb{R}$

Generalized convexity: we change the shape of the tangents!

$$
T(x)=\langle x, \alpha\rangle+\beta, \forall x \in \mathbb{R}^{n}
$$

Scalar product $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n}$
Slope: $\alpha \in \mathbb{R}^{n}$
Intercept: $\beta \in \mathbb{R}$

$$
T(u)=c(u, v)+\beta
$$

Generalized convexity: we change the shape of the tangents!

$$
\begin{gathered}
T(x)=\langle x, \alpha\rangle+\beta, \forall x \in \mathbb{R}^{n} \\
\text { Scalar product }\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \\
\text { Slope: } \alpha \in \mathbb{R}^{n} \\
\text { Intercept: } \beta \in \mathbb{R}
\end{gathered}
$$

$$
T(u)=c(u, v)+\beta
$$

Coupling $c: U \times V \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$
Slope: $v \in V$
Intercept: $\beta \in \mathbb{R}$

Generalized convexity: we change the shape of the tangents!

$$
\begin{gathered}
T(x)=\langle x, \alpha\rangle+\beta, \forall x \in \mathbb{R}^{n} \\
\text { Scalar product }\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \\
\text { Slope: } \alpha \in \mathbb{R}^{n} \\
\text { Intercept: } \beta \in \mathbb{R}
\end{gathered}
$$

$$
T(u)=c(u, v)+\beta
$$

Coupling $c: U \times V \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$
Slope: $v \in V$
Intercept: $\beta \in \mathbb{R}$

Coming next: generalized convexity of Gomory function

$$
y=\max \left\{3 b+\lceil b\rceil, 2 b+-3\lceil b\rceil,-3 b+\lceil 2 b\rceil+\left\lceil\frac{3}{10} b\right\rceil\right\}
$$

Outline

Introduction
Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar
Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling Branching out
Cutting plane methods for sparse optimization
Conclusion
Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

Application of the scheme to Linear Programming

Initial minimization problem

$$
\begin{aligned}
& \inf _{x} \quad\langle x, k\rangle \\
& A x=b_{0} \\
& x \in \mathbb{Q}_{+}^{n}
\end{aligned}
$$

Step 1. Perturbation of the initial minimization problem

$$
\forall b \in \mathbb{Q}^{m}, \varphi(b)=\inf _{x}\langle x, k\rangle
$$

- Perturbation space: \mathbb{Q}^{m}
- Perturbation function $\varphi: \mathbb{Q}^{m} \rightarrow \overline{\mathbb{R}}$
- Value of the initial problem: $\varphi\left(b_{0}\right)$

Epigraph of the perturbation function

$\varphi(b)=\max \{-5 b-5,-3 b+1,3, b\}$

Step 2. Coupling and conjugate function

- Perturbation function

$$
\forall b \in \mathbb{Q}^{m}, \varphi(b)=\inf _{x}\langle x, k\rangle
$$

- Coupling $\langle\cdot, \cdot\rangle: \mathbb{Q}^{m} \times \mathbb{Q}^{m} \rightarrow \mathbb{R}$
- Conjugate function $\varphi^{\star}: \mathbb{Q}^{m} \rightarrow \overline{\mathbb{R}}$

$$
\forall p \in \mathbb{Q}^{m}, \varphi^{\star}(p)=\sup _{b \in \mathbb{Q}^{m}}\{\langle b, p\rangle-\varphi(b)\}
$$

Step 3. Biconjugate and weak duality

- Biconjugate function $\varphi^{\star \star^{\prime}}: \mathbb{Q}^{m} \rightarrow \overline{\mathbb{R}}$

$$
\forall b \in \mathbb{Q}^{m}, \varphi^{\star \star^{\prime}}(b)=\sup _{p \in \mathbb{Q}^{m}}\left\{\star(b, p)+\left(-\varphi^{\star}(p)\right)\right\}
$$

- Weak duality

$$
\varphi^{\star \star^{\prime}}(b) \leq \varphi(b)
$$

Step 3. Biconjugate and weak duality

- Biconjugate function $\varphi^{\star \star^{\prime}}: \mathbb{Q}^{m} \rightarrow \overline{\mathbb{R}}$

$$
\forall b \in \mathbb{Q}^{m}, \varphi^{\star \star^{\prime}}(b)=\sup _{p \in \mathbb{Q}^{m}}\left\{\star(b, p)+\left(-\varphi^{\star}(p)\right)\right\}
$$

- Property of biconjugacy

$$
\varphi^{\star \star^{\prime}}(b) \leq \varphi(b)
$$

- Weak duality

$$
\varphi^{\star \star^{\prime}}(b) \leq \varphi(b)=\inf _{x}\langle x, k\rangle
$$

Step 3. Biconjugate and weak duality

- Biconjugate function $\varphi^{\star \star^{\prime}}: \mathbb{Q}^{m} \rightarrow \overline{\mathbb{R}}$

$$
\forall b \in \mathbb{Q}^{m}, \varphi^{\star \star^{\prime}}(b)=\sup _{p \in \mathbb{Q}^{m}}\left\{\star(b, p)+\left(-\varphi^{\star}(p)\right)\right\}
$$

- Property of biconjugacy

$$
\varphi^{\star \star^{\prime}}(b) \leq \varphi(b)
$$

- Weak duality

$$
\begin{array}{cl}
\sup _{p} & \langle p, b\rangle \\
p^{T} A \leq k \\
p \in \mathbb{Q}^{m}
\end{array} \quad=\varphi^{\star \star^{\prime}}(b) \leq \varphi(b)=\begin{gathered}
\inf _{x} \\
A x=b \\
x \in \mathbb{Q}_{+}^{n}
\end{gathered}
$$

Step 4. Closed convexity and strong duality

- φ is lower-semi-continuous convex

- So we have strong duality

$$
\varphi^{\star \star^{\prime}}(b)=\varphi(b)
$$

Step 4. Closed convexity and strong duality

- φ is lower-semi-continuous convex

- So we have strong duality

$$
\begin{array}{cc}
\sup _{p}\left\langle p, b_{0}\right\rangle \\
p^{T} A \leq k \\
p \in \mathbb{Q}^{m}
\end{array} \quad=\varphi^{\star \star^{\prime}}(b)=\varphi(b)=\begin{gathered}
\inf _{x}\langle x, k\rangle \\
A x=b \\
x \in \mathbb{Q}_{+}^{n}
\end{gathered}
$$

Summary of the perturbation-duality scheme

[Rockafellar, 1974]

1. We perturb a minimization problem

$$
\forall b \in \mathbb{Q}^{m}, \varphi(b)=\inf _{x}\langle x, k\rangle
$$

Summary of the perturbation-duality scheme

[Rockafellar, 1974]

1. We perturb a minimization problem

$$
\forall b \in \mathbb{Q}^{m}, \varphi(b)=\inf _{x}\langle x, k\rangle
$$

2. We pair a primal space \mathbb{Q}^{m} and a dual space \mathbb{Q}^{m}

$$
\langle\cdot, \cdot\rangle: \mathbb{Q}^{m} \times \mathbb{Q}^{m} \rightarrow \mathbb{R}
$$

Summary of the perturbation-duality scheme

[Rockafellar, 1974]

1. We perturb a minimization problem

$$
\forall b \in \mathbb{Q}^{m}, \varphi(b)=\inf _{x}\langle x, k\rangle
$$

2. We pair a primal space \mathbb{Q}^{m} and a dual space \mathbb{Q}^{m}

$$
\langle\cdot, \cdot\rangle: \mathbb{Q}^{m} \times \mathbb{Q}^{m} \rightarrow \mathbb{R}
$$

3. We biconjugate the perturbation function φ

$$
\underbrace{\varphi^{\star \star^{\prime}}(b) \leq \varphi(b), \quad \forall b \in \mathbb{Q}^{m}}_{\text {Weak duality is guaranteed! }}
$$

Summary of the perturbation-duality scheme

[Rockafellar, 1974]

1. We perturb a minimization problem

$$
\forall b \in \mathbb{Q}^{m}, \varphi(b)=\inf _{x}\langle x, k\rangle
$$

2. We pair a primal space \mathbb{Q}^{m} and a dual space \mathbb{Q}^{m}

$$
\langle\cdot, \cdot\rangle: \mathbb{Q}^{m} \times \mathbb{Q}^{m} \rightarrow \mathbb{R}
$$

3. We biconjugate the perturbation function φ

$$
\underbrace{\varphi^{\star \star^{\prime}}(b) \leq \varphi(b), \quad \forall b \in \mathbb{Q}^{m}}_{\text {Weak duality is guaranteed! }}
$$

4. Strong duality when φ is Isc convex

Introducing generalized convexity

[Balder, 1977]

Fenchel conjugate

$$
f^{\star}(v)=\sup _{u \in \mathbb{R}^{m}}\langle u, v\rangle-f(u)
$$

Fenchel biconjugate

$f^{\star \star^{\prime}}(u)=\sup _{v \in \mathbb{R}^{m}}\langle u, v\rangle-f^{\star}(v)$	$g^{c c^{\prime}}(u)=\sup _{v \in V} c(u, v)+\left(-g^{c}(v)\right)$
Isc convex functions	c convex functions
$\Longleftrightarrow f=f^{\star \star^{\prime}}$	$: \Longleftrightarrow g=g^{c c^{\prime}}$

Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

$$
\varphi: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}
$$

Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

$$
\varphi: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}
$$

2. We pair a primal space \mathbb{R}^{m} and a dual space V

$$
c: \mathbb{R}^{m} \times V \rightarrow \overline{\mathbb{R}}
$$

Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

$$
\varphi: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}
$$

2. We pair a primal space \mathbb{R}^{m} and a dual space V

$$
c: \mathbb{R}^{m} \times V \rightarrow \overline{\mathbb{R}}
$$

3. We biconjugate the perturbation function φ

$$
\underbrace{\varphi^{c c^{\prime}}(b) \leq \varphi(b), \quad \forall b \in \mathbb{R}^{m}}_{\text {Weak duality is guaranteed! }}
$$

Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

$$
\varphi: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}
$$

2. We pair a primal space \mathbb{R}^{m} and a dual space V

$$
c: \mathbb{R}^{m} \times V \rightarrow \overline{\mathbb{R}}
$$

3. We biconjugate the perturbation function φ

$$
\underbrace{\varphi^{c c^{\prime}}(b) \leq \varphi(b), \quad \forall b \in \mathbb{R}^{m}}_{\text {Weak duality is guaranteed! }}
$$

4. Strong duality when φ is c-convex

Outline

Introduction
 Overview of generalized convexity and duality

Perturbation-duality scheme applied to PILP

Cutting plane methods for sparse optimization

Conclusion

Annexes

Outline

Introduction
Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar
Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling Branching out
Cutting plane methods for sparse optimization
Conclusion
Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

Strong duality in LP

$$
\begin{aligned}
& \text { Dual problem } \\
& \text { "Primal" problem }
\end{aligned}
$$

- Complementary slackness

$$
\widehat{x}_{j}\left(k_{j}-\widehat{p}^{T} A_{j}\right)=0, \forall j \in=1, \ldots, n
$$

Strong duality in LP

$$
\begin{aligned}
& \text { Dual problem } \\
& \text { "Primal" problem }
\end{aligned}
$$

- Complementary slackness

$$
\widehat{x}_{j}\left(k_{j}-\widehat{p}^{T} A_{j}\right)=0, \forall j \in=1, \ldots, n
$$

Weak duality in PILP

Dual problem

"Primal" problem

- Complementary slackness

Subadditive dual problem of Jeroslow

- [Jeroslow, 1979]
dual problem
"primal" problem
F is subadditive
- Complementary slackness

$$
\begin{aligned}
x_{j}\left(k_{j}-F\left(a_{j}\right)\right) & =0, \forall j=1, \ldots, n \\
\sum_{j=1}^{n} F\left(A_{j}\right) x_{j} & =F\left(b_{0}\right)
\end{aligned}
$$

Link between Jeroslow's result and perturbation-duality scheme?

Which scheme for PILP duality?

- We define a perturbation function $G: \mathbb{Q}^{m} \rightarrow \overline{\mathbb{R}}$

$$
\forall b \in \mathbb{Q}^{m}, G(b)=\inf _{x}\langle x, k\rangle
$$

- We define a coupling between primal and dual space

$$
c: \mathbb{Q}^{m} \times ? ? \rightarrow \mathbb{R}
$$

- We biconjugate the perturbation function

$$
\underbrace{G^{c c^{\prime}}(b) \leq G(b), \quad \forall b \in \mathbb{Q}^{m}}_{\text {weak duality }}
$$

Outline

Introduction
Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar
Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling Branching out
Cutting plane methods for sparse optimization
Conclusion
Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

Definition of Chvátal functions

Definition

The class of Chvátal functions \mathcal{C}^{m} is the smallest class of functions $D \subset\left\{f \mid f: \mathbb{Q}^{m} \rightarrow \mathbb{Q}\right\}$ such that

$$
\left.\begin{array}{rr}
b \in \mathbb{Q}^{m} \mapsto & \lambda b \in D, \quad \forall b \in \mathbb{Q}^{m}
\end{array} \quad \text { (linear functions) }\right) \text { (conic combination) }
$$

Examples in 1D

- $b \mapsto \frac{3}{4} b$
- $b \mapsto\lceil b\rceil$
- $b \mapsto \frac{3}{4} b+\frac{7}{10}\lceil b\rceil$
- $b \mapsto 15 b+\frac{39}{22}\left\lceil\frac{3}{4} b+\frac{7}{10}\lceil b\rceil\right\rceil+\lceil 16 b\rceil$

Jeroslow's dual problem with Chvátal functions

Chvátal function class: \mathcal{C}^{m}
[Jeroslow, 1979] [Blair and Jeroslow, 1982]

$$
\begin{array}{ccc}
\sup _{F} & F\left(b_{0}\right) & \sup _{F} \\
F\left(A_{j}\right) \leq k_{j} & & F\left(b_{0}\right) \\
F(0) \leq 0 & F\left(A_{j}\right) \leq k_{j} \\
\text { Fest sous-add. } & & F(0) \leq 0 \\
& F \in \mathcal{C}^{m}
\end{array}
$$

strong duality with initial PILP is achieved for both!

Outline

Introduction
Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar
Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling Branching out
Cutting plane methods for sparse optimization
Conclusion
Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

Chvátal perturbation-duality scheme

- We define a perturbation function

$$
\forall b \in \mathbb{Q}^{m}, G(b)=\inf _{x}\langle x, k\rangle
$$

- We define a coupling between primal and dual space

$$
\begin{aligned}
& c_{\mathcal{C}}: \mathbb{Q}^{m} \times \mathcal{C}^{m} \rightarrow \mathbb{R} \\
& c_{\mathcal{C}}(b, F)=F(b), \quad \forall b \in \mathbb{Q}^{m}, \quad \forall F \in \mathcal{C}^{m}
\end{aligned}
$$

- We biconjugate the perturbation functions

$$
\underbrace{G^{c_{\mathcal{C}} c_{\mathcal{C}}}(b) \leq G(b), \quad \forall b \in \mathbb{Q}^{m}}_{\text {weak duality }}
$$

- We get strong duality $G^{c_{c} c^{\prime}}\left(b_{0}\right)=G\left(b_{0}\right)$

Obtained dual problems

Formulation 1:

$$
G^{c_{\mathcal{C}} \mathcal{C}^{\prime}}\left(b_{0}\right)=\sup _{F \in \mathcal{C}^{m}}\left\{F\left(b_{0}\right)+\inf _{b \in \mathbb{Q}^{m}}\{G(b)-F(b)\}\right\}
$$

Formulation 2:

$$
G^{c_{\mathcal{C}} c_{\mathcal{C}}^{\prime}}\left(b_{0}\right)=\sup _{F \in \mathcal{C}^{m}}\left\{F\left(b_{0}\right)+\inf _{x \in \mathbb{Z}_{+}^{n}}\{\langle x, k\rangle-F(A x)\}\right\}
$$

Obtained dual problems

Formulation 1:

$$
G^{c_{\mathcal{C}} c_{\mathcal{C}}}\left(b_{0}\right)=\sup _{F \in \mathcal{C}^{m}}\left\{F\left(b_{0}\right)+\inf _{b \in \mathbb{Q}^{m}}\{G(b)-F(b)\}\right\}
$$

Formulation 2:

$$
G^{c_{\mathcal{C}} c_{C}^{\prime}}\left(b_{0}\right)=\sup _{F \in \mathcal{C}^{m}}\left\{F\left(b_{0}\right)+\inf _{x \in \mathbb{Z}_{+}^{n}}\{\langle x, k\rangle-F(A x)\}\right\}
$$

Reminder Jeroslow's dual problem

$$
\begin{aligned}
& \sup _{F} \quad F\left(b_{0}\right) \\
& F\left(A_{j}\right) \leq k_{j} \\
& F(0) \leq 0 \\
& F \in \mathcal{C}^{m}
\end{aligned}
$$

Generalized subdifferential and complementary slackness

Proposition

- G: bounded perturbation function of a MILP
- $A=\left(A_{j}\right)_{j=1, \ldots, n} \in \mathbb{Q}^{m \times n}$ constraint matrix
- $b_{0} \in \mathbb{Q}^{n}$ anchor

If $\hat{x} \in\left\{x \in \mathbb{Z}_{+}^{n} \mid A x=b_{0}\right\}$ and $\hat{F} \in \mathcal{C}^{m}$ are "primal"-dual optimal solutions then we have the equivalence

$$
\begin{gathered}
\hat{F} \in \partial^{c_{C}} G\left(b_{0}\right) \\
\Longleftrightarrow-k \in \partial\left(-\widehat{F} \circ A \dot{+} \delta_{\mathbb{Z}_{+}^{n}}\right)(\hat{x})
\end{gathered}
$$

Furthermore, if $\widehat{F}\left(A_{j}\right) \leq k_{j}, \forall j=1, \ldots, n$, then the following assertion is also equivalent
$\widehat{F}(0) \leq 0, \quad \widehat{F}\left(b_{0}\right)=G\left(b_{0}\right)$ and $\left(k_{j}-\widehat{F}\left(A_{j}\right)\right) \hat{x}_{j}=0, \forall j=1, \ldots, n$.

Epigraph of a perturbation function for a PILP

$$
G(b)=\max \left\{3 b+\lceil b\rceil, 2 b+-3\lceil b\rceil,-3 b+\lceil 2 b\rceil+\left\lceil\frac{3}{10} b\right\rceil\right\}
$$

Epigraph of a perturbation function for a PILP

$$
G(b)=\max \left\{3 b+\lceil b\rceil, 2 b+-3\lceil b\rceil,-3 b+\lceil 2 b\rceil+\left\lceil\frac{3}{10} b\right\rceil\right\}
$$

Epigraph of a perturbation function for a PILP

$$
G(b)=\max \left\{3 b+\lceil b\rceil, 2 b+-3\lceil b\rceil,-3 b+\lceil 2 b\rceil+\left\lceil\frac{3}{10} b\right\rceil\right\}
$$

Epigraph of a perturbation function for a PILP

$$
G(b)=\max \left\{3 b+\lceil b\rceil, 2 b+-3\lceil b\rceil,-3 b+\lceil 2 b\rceil+\left\lceil\frac{3}{10} b\right\rceil\right\}
$$

Outline

Introduction
Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar
Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling
Branching out
Cutting plane methods for sparse optimization
Conclusion
Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

Limitations of Chvátal functions

- Solve the dual problem of Jeroslow: which algorithm? ([Klabjan, 2007])
- Expression of a Chvátal function $F \in \mathcal{C}^{m}$: no limit on the number of $\lceil\cdot\rceil$

Proposed relaxation: quasiaffine program

- Relaxation : considering a subclass of Chvátal functions

Example
$\alpha \in \mathbb{Q}_{+}$

$$
\begin{array}{ll}
\sup _{\lambda \in \mathbb{Q}^{m}} \\
\left\langle\lambda, A_{j}\right\rangle+\alpha\left\lceil\left\langle\lambda, A_{j}\right\rangle\right\rceil \leq k_{j}, & \left\langle\lambda, b_{0}\right\rangle+\alpha\left\lceil\left\langle\lambda, b_{0}\right\rangle\right\rceil \tag{1}\\
\forall j \in\{1, \ldots, n\}
\end{array}
$$

- This program is quasiaffine! [Martínez-Legaz, 2005]

SECOND PART

Outline

> Introduction

> Overview of generalized convexity and duality

> Perturbation-duality scheme applied to PILP

Cutting plane methods for sparse optimization

Conclusion

Annexes

ℓ_{0} pseudonorm and sparse optimization

Definition

The pseudonorm $\ell_{0}: \mathbb{R}^{d} \rightarrow\{0, \ldots, d\}$

$$
\ell_{0}(x)=\# \text { nonnull components of } x, \forall x \in \mathbb{R}^{d}
$$

- Examples: $\ell_{0}\left(\begin{array}{c}1 \\ 0 \\ -50\end{array}\right)=2, \ell_{0}\left(\begin{array}{l}0 \\ 0 \\ 3\end{array}\right)=1, \ell_{0}\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)=0$.
- Application in compressive sensing, image recovery, minimum description length

E-Capra conjugacy and E-Capra convex sets

 The norm $\ell_{2}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+} \ell_{2}(x)=\sqrt{\sum_{i=1}^{d} x_{i}^{2}}$
Definition

Normalization mapping $n: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$

$$
\forall x \in \mathbb{R}^{d}, n(x)=\left\{\begin{array}{cl}
x / \ell_{2}(x), & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right.
$$

Coupling Euclidean Constant Along PRimal RAy (E-CAPRA) \&: $\mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
\dot{c}(x, y)=\langle n(x), y\rangle, \forall x, y \in \mathbb{R}^{d}
$$

[Chancelier and De Lara, 2022]

Proposition

The pseudonorm ℓ_{0} is E -Capra convex, meaning $\ell_{0}=\ell_{0}^{\mathrm{CC} C^{\prime}}$

Three considered problems

Problems	Min of norms ratio	Min of $\ell_{\mathbf{0}}$	Matrix spark
Objective fun.	$\ell_{\mathbf{1}} / \ell_{\mathbf{2}}$	$\ell_{\mathbf{0}}$	$\ell_{\mathbf{0}}$
E-Capra convex	\checkmark	\checkmark	\checkmark
Feasible set	$\overline{\text { cone }\left(g_{\mathbf{1}}, \ldots g_{r}\right) \backslash\{0\}}$	$\overline{\text { cone }}\left(g_{1}, \ldots g_{r}\right) \backslash\{0\}$	$\left\{x \in \mathbb{R}^{d} \backslash\{0\}: A x=0\right\}$
E-Capra convex	\checkmark	\checkmark	

Examples and counterexamples of E-Capra convex sets

Examples

Counterexamples

Cutting plane method in action

ℓ_{0} graph on the sphere in \mathbb{R}^{3}

$\ell 0$ surface

E-Capra cuts

1 Cuts heatmap

E-Capra cuts

2 Cuts heatmap

E-Capra cuts

3 Cuts heatmap

E-Capra cuts

20 Cuts heatmap

E-Capra cuts

20 Cuts heatmap

E-Capra cuts

Solving time for the ratio of norms

Relative gap for ℓ_{0} minimization

Relative gap $=\frac{\text { best found value-optimal value }}{\text { dimension }}$

Solving time comparison between Brute Force and cutting plane

Outline

> Introduction

> Overview of generalized convexity and duality

> Perturbation-duality scheme applied to PILP

> Cutting plane methods for sparse optimization

Conclusion

Annexes

Generalized convexity for PILP

- Clarification on the notion of dual problems
- A new dual problem for PILP
- Sensitivity analysis in PILP [Wolsey, 1981]

Abstract convex methods for generalized convexity

- Cutting plane method \leftrightarrow Gomory cutting plane method
- Other: Branch-and-Bound, Tabu search, variants with local search [Rubinov, 2000]

Spatial branch-and-bound

Thank you for your attention!

Bibliographie

E. J. Balder. An extension of duality-stability relations to nonconvex optimization problems. SIAM Journal on Control and Optimization, 15(2):329-343, 1977.
Charles E Blair and Robert G Jeroslow. The value function of an integer program. Mathematical programming, 23(1):237-273, 1982.
Jean-Philippe Chancelier and Michel De Lara. Variational formulations for the 10 pseudonorm and applications to sparse optimization. Preprint hal-02459688, arXiv:2002.01314, 2020.
Jean-Philippe Chancelier and Michel De Lara. Hidden convexity in the 10 pseudonorm. Journal of Convex Analysis, 28(1):203-236, 2021.
Jean-Philippe Chancelier and Michel De Lara. Capra-convexity, convex factorization and variational formulations for the $/ 0$ pseudonorm. Set-Valued and Variational Analysis, 30:597-619, 2022.
Robert G Jeroslow. Minimal inequalities. Mathematical programming, 17(1):1-15, 1979.
Diego Klabjan. Subadditive approaches in integer programming. European Journal of Operational Research, 183(2):525-545, 2007. ISSN 0377-2217. doi:
https://doi.org/10.1016/j.ejor. 2006.10.009. URL https://www.sciencedirect.com/science/article/pii/S0377221706010423.
Adrien Le Franc. Subdifferentiability in convex and stochastic optimization applied to renewable power systems. Theses, École des Ponts ParisTech, December 2021. URL https://pastel.archives- ouvertes.fr/tel-03657075.
Adrien Le Franc, Jean-Philippe Chancelier, and Michel De Lara. The capra-subdifferential of the $\%$ pseudonorm. Optimization, pages 1-23, 2022. doi: 10.1080/02331934.2022.2145172. accepted for publication.
J. E. Martínez-Legaz. Generalized convex duality and its economic applications. In Schaible S. Hadjisavvas N., Komlósi S., editor, Handbook of Generalized Convexity and Generalized Monotonicity. Nonconvex Optimization and Its Applications, volume 76, pages 237-292. Springer-Verlag, 2005.
Juan-Enrique Martinez-Legaz and Ivan Singer. Subdifferentials with respect to dualities. Mathematical Methods of Operations Research, 42(1):109-125, February 1995.
Diethard Pallaschke and Stefan Rolewicz. Foundations of mathematical optimization, volume 388 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1997. ISBN 0-7923-4424-3.
R. Tyrrell Rockafellar. Conjugate Duality and Optimization. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, 1974.
Alexander Rubinov. Abstract convexity and global optimization, volume 44 of Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht, 2000. ISBN 0-7923-6323-X. इ
Andreas M. Tillmann and Marc E. Pfetsch. The computational complexity of the restricted isometry $78 / 128$

Outline

> Introduction

> Overview of generalized convexity and duality

> Perturbation-duality scheme applied to PILP

> Cutting plane methods for sparse optimization

> Conclusion

Annexes

Outline

Introduction

Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar
Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling
Branching out
Cutting plane methods for sparse optimization
Conclusion
Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

Moreau lower and upper additions

$$
\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty\} \cup\{+\infty\}=[-\infty,+\infty]
$$

Moreau lower and upper additions extend the usual addition with

$$
\begin{aligned}
& (+\infty)+(-\infty)=(-\infty)+(+\infty)=-\infty \\
& (+\infty)+(-\infty)=(-\infty)+(+\infty)=+\infty
\end{aligned}
$$

Coupling

Background on couplings and Fenchel-Moreau conjugacies

Definition

Two vector spaces \mathbb{X} and \mathbb{Y}, paired by a bilinear form \langle, give rise to the classic Fenchel conjugacy

$$
\begin{gathered}
f \in \overline{\mathbb{R}}^{\mathbb{X}} \mapsto f^{\star} \in \overline{\mathbb{R}}^{\mathbb{Y}} \\
f^{\star}(y)=\sup _{x \in \mathbb{X}}(\langle x, y\rangle+(-f(x))), \quad \forall y \in \mathbb{Y}
\end{gathered}
$$

- Let be given two sets \mathbb{X} ("primal") and \mathbb{Y} ("dual") not necessarily paired vector spaces (nodes and arcs, etc.)
- We consider a coupling function

$$
c: \mathbb{X} \times \mathbb{Y} \rightarrow \overline{\mathbb{R}}
$$

We also use the notation $\mathbb{X} \stackrel{¢}{\leftrightarrow} \mathbb{Y}$ for a coupling [Martínez-Legaz, 2005]

Conjugacy

Fenchel-Moreau conjugate and biconjugate

$$
f \in \overline{\mathbb{R}}^{\mathbb{X}} \mapsto f^{c} \in \overline{\mathbb{R}}^{\mathbb{Y}}
$$

Definition

The c-Fenchel-Moreau conjugate of a function $f: \mathbb{X} \rightarrow \overline{\mathbb{R}}$, with respect to the coupling c, is the function $f^{c}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ defined by

$$
f^{c}(y)=\sup _{x \in \mathbb{X}}(c(x, y)+(-f(x))), \forall y \in \mathbb{Y}
$$

The c-Fenchel-Moreau biconjugate $f^{c c^{\prime}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ is given by

$$
f^{c c^{\prime}}(x)=\left(f^{c}\right)^{c^{\prime}}(x)=\sup _{y \in \mathbb{Y}}\left(c(x, y)+\left(-f^{c}(y)\right)\right), \quad \forall x \in \mathbb{X}
$$

Fenchel-Moreau biconjugate

With the coupling c, we associate the reverse coupling c^{\prime}

$$
c^{\prime}: \mathbb{Y} \times \mathbb{X} \rightarrow \overline{\mathbb{R}}, \quad c^{\prime}(y, x)=c(x, y), \quad \forall(y, x) \in \mathbb{Y} \times \mathbb{X}
$$

- The c^{\prime}-Fenchel-Moreau conjugate of a function $g: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$, with respect to the coupling c^{\prime}, is the function $g^{c^{\prime}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$

$$
g^{c^{\prime}}(x)=\sup _{y \in \mathbb{Y}}(c(x, y)+(-g(y))), \quad \forall x \in \mathbb{X}
$$

- The c-Fenchel-Moreau biconjugate $f^{c c^{\prime}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ of a function $f: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ is given by

$$
f^{c c^{\prime}}(x)=\left(f^{c}\right)^{c^{\prime}}(x)=\sup _{y \in \mathbb{Y}}\left(c(x, y)+\left(-f^{c}(y)\right)\right), \quad \forall x \in \mathbb{X}
$$

So-called c-convex functions have dual representations

For any function $f: \mathbb{X} \rightarrow \overline{\mathbb{R}}$, one has that

$$
f^{C c^{\prime}} \leq f
$$

Definition

The function $f: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ is c-convex if $f^{c c^{\prime}}=f$

If the function $f: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ is c-convex, we have

$$
f(x)=\sup _{y \in \mathbb{Y}} \underbrace{\left(c(x, y)+\left(-f^{c}(y)\right)\right)}_{\text {elementary function of } x}, \forall x \in \mathbb{X}
$$

Example: \star-convex functions
$=$ closed convex functions
[Rockafellar, 1974, p. 15]
$=$ proper convex Isc or $\equiv-\infty$ or $\equiv+\infty$
$=$ suprema of affine functions

Subdifferential

Subdifferential(s) $\partial^{c} f, \partial_{c} f, \partial_{c}^{c} f: \mathbb{X} \rightrightarrows \mathbb{Y}$ of a conjugacy

For any function $f: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ and $x \in \mathbb{X}, y \in \mathbb{Y}$,

Definition

Upper subdifferential (following Martinez-Legaz and Singer [1995])

$$
y \in \partial^{c} f(x) \Longleftrightarrow f(x)=c(x, y)+\left(-f^{c}(y)\right)
$$

Middle subdifferential ("à la Fenchel-Young")

$$
y \in \partial_{c}^{c} f(x) \Longleftrightarrow f(x)+f^{c}(y)=c(x, y)
$$

Lower subdifferential ("à la Rockafellar-Moreau")

$$
y \in \partial_{c} f(x) \Longleftrightarrow f^{c}(y)=c(x, y)+(-f(x))
$$

Properties of subdifferentials

- The upper subdifferential $\partial^{c} f$ has the property that

$$
\partial^{c} f(x) \neq \emptyset \Rightarrow \underbrace{f^{c c^{\prime}}(x)=f(x)}_{\text {the function } f \text { is } c \text {-convex at } x}
$$

- The lower subdifferential $\partial_{c} f$ is characterized by

$$
\begin{aligned}
y \in \partial_{c} f(x) \Longleftrightarrow & x \in \underset{x^{\prime} \in \mathbb{X}}{\arg \max }\left[c\left(x^{\prime}, y\right)+\left(-f\left(x^{\prime}\right)\right)\right] \\
\Longleftrightarrow & c\left(x^{\prime}, y\right)+\left(-f\left(x^{\prime}\right)\right) \\
& \leq c(x, y)+(-f(x)), \forall x^{\prime} \in \mathbb{X}
\end{aligned}
$$

- All definitions coincide when

$$
-\infty<c<+\infty \text { and }-\infty<f(x)<+\infty
$$

Outline

Introduction
Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar
Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling
Branching out
Cutting plane methods for sparse optimization
Conclusion
Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

Dual problems: perturbation scheme [Rockafellar, 1974]

- Set \mathbb{W}, function $h: \mathbb{W} \rightarrow \overline{\mathbb{R}}$ and original minimization problem

$$
\inf _{w \in \mathbb{W}} h(w)
$$

- Embedding/perturbation scheme given by a nonempty set \mathbb{X} (perturbations), an element $\bar{x} \in \mathbb{X}$ (anchor) and a function (Rockafellian) $\mathcal{R}: \mathbb{W} \times \mathbb{X} \rightarrow \overline{\mathbb{R}}$ such that

$$
h(w)=\mathcal{R}(w, \bar{x})
$$

- Perturbation function

$$
\phi(x)=\inf _{w \in \mathbb{W}} \mathcal{R}(w, x)
$$

- Original minimization problem

$$
\phi(\bar{x})=\inf _{w \in \mathbb{W}} \mathcal{R}(w, \bar{x})=\inf _{w \in \mathbb{W}} h(w)
$$

Dual problems: conjugacy, weak and strong duality

- Coupling $\mathbb{X} \stackrel{c}{\leftrightarrow} \mathbb{Y}$, and Lagrangian $\mathcal{L}: \mathbb{W} \times \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ given by

$$
\mathcal{L}(w, y)=\inf _{x \in \mathbb{X}}\{\mathcal{R}(w, x)+(-c(x, y))\}
$$

- Dual function

$$
\psi(y)=-\phi^{c}(y)=\inf _{w \in \mathbb{W}} \mathcal{L}(w, y)
$$

- Dual maximization problem (weak duality)

$$
\phi^{c c^{\prime}}(\bar{x})=\sup _{y \in \mathbb{Y}}\{c(\bar{x}, y)+\psi(y)\} \leq \inf _{w \in \mathbb{W}} h(w)=\phi(\bar{x})
$$

- Strong duality holds true when ϕ is c-convex at \bar{x}, that is,

$$
\phi^{c c^{\prime}}(\bar{x})=\sup _{y \in \mathbb{Y}}\{c(\bar{x}, y)+\psi(y)\}=\inf _{w \in \mathbb{W}} h(w)=\phi(\bar{x})
$$

Dual problems: perturbation scheme [Rockafellar, 1974]

sets	optimization set \mathbb{W}	primal set \mathbb{X}	coupling $\mathbb{X} \stackrel{c}{\leftrightarrow} \mathbb{Y}$	dual set \mathbb{Y}
variables	decision $w \in \mathbb{W}$	perturbation $x \in \mathbb{X}$	$\underset{\underset{\in}{c}(x, y)}{\substack{\mathbb{R}}}$	sensitivity $y \in \mathbb{Y}$
bivariate functions		Rockafellian $\mathcal{R}: \mathbb{W} \times \mathbb{X} \rightarrow \overline{\mathbb{R}}$		$\begin{gathered} \text { Lagrangian } \\ \mathcal{L}: \mathbb{W} \times \mathbb{Y} \rightarrow \overline{\mathbb{R}} \end{gathered}$
definition				$\begin{gathered} \mathcal{L}(w, y)= \\ \inf _{x \in \mathbb{X}}\{\mathcal{R}(w, x)+(-c(x, y))\} \end{gathered}$
property				$-\mathcal{L}(w, \cdot)=(\mathcal{R}(w, \cdot))^{\text {c }}$
property				$-\mathcal{L}(w, \cdot)$ is c^{\prime}-convex
univariate functions		perturbation function $\phi: \mathbb{X} \rightarrow \overline{\mathbb{R}}$		dual function $\psi: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$
definition		$\phi(x)=\inf _{w \in \mathbb{W}} \mathcal{R}(w, x)$		$\psi(y)=\inf _{w \in \mathbb{W}} \mathcal{L}(w, y)$
property				$-\psi=\phi^{c}$

Anchor $\bar{x} \in \mathbb{X}$ and dual maximization problem (weak duality) $\phi^{c c^{\prime}}(\bar{x})=\sup _{y \in \mathbb{Y}}\{c(\bar{x}, y)+\psi(y)\} \leq \inf _{w \in \mathbb{W}} h(w)=\phi(\bar{x})$
Strong duality iff ϕ is c-convex at \bar{x} iff $\phi^{c c^{\prime}}(\bar{x})=\phi(\bar{x})$

Outline

Introduction
Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar
Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling
Branching out
Cutting plane methods for sparse optimization
Conclusion
Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

Abstract cutting plane method

[Rubinov, 2000, §9.2.3]

Definition

Let \mathbb{W} be a set, $H \subset \overline{\mathbb{R}}^{\mathbb{W}}$ be a set of elementary functions, and $f: \mathbb{W} \rightarrow \overline{\mathbb{R}}$ be a H-convex function

1. Set $k:=0$. Choose an arbitrary initial point $w_{0} \in \mathbb{W}$
2. Calculate an abstract subgradient $h_{k} \in \partial^{H} f\left(w_{k}\right)$

Let $f_{-1}=-\infty$ and

$$
f_{k}=\max \{f_{k-1}, \underbrace{h_{k}}_{\text {new cut }}\}
$$

3. Calculate an optimal solution $\widehat{w} \in \arg \min _{w \in \mathbb{W}} f_{k}(w)$
4. Set $k:=k+1, w_{k}=\widehat{w}$

Repeat from Step 2 until a stop condition is satisfied

Abstract cutting plane method: convergence result

[Pallaschke and Rolewicz, 1997, Theorem 9.1.1]

Theorem

Let

- (\mathbb{W}, d) be a metric space
- H be a family of real-valued locally uniform continuous functions $h: \mathbb{W} \rightarrow \mathbb{R}$,
- $f: \mathbb{W} \rightarrow \overline{\mathbb{R}}$ be a continuous H-convex function

Then, all accumulation points of the sequence $\left\{w_{k}\right\}_{k \in \mathbb{N}}$ generated by the abstract cutting plane method are minimizers of the function f

Outline

Introduction
Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar
Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling Branching out
Cutting plane methods for sparse optimization
Conclusion
Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

E-Capra conjugacy

The $\ell_{2}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$norm is defined by $\ell_{2}(x)=\sqrt{\sum_{i=1}^{d} x_{i}^{2}}$

Definition

Let $n: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be the normalization mapping given by

$$
\forall x \in \mathbb{R}^{d}, \quad n(x)=\left\{\begin{array}{cl}
x / \ell_{2}(x), & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right.
$$

We define the Euclidean Constant Along PRimal RAy (E-CAPRA) coupling $\&: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\oint(x, y)=\langle n(x), y\rangle, \forall x, y \in \mathbb{R}^{d}
$$

Definition and characterization of E-Capra convex sets

Definition

We say that the set $D \subset \mathbb{R}^{d}$ is E-Capra convex if $\iota_{D}=\iota_{D}^{\dot{C C^{\prime}}}$ meaning the indicator function ι_{D} is a E -Capra convex function
[Le Franc, 2021, Proposition 6.2.6]

Proposition

Let $D \subseteq \mathbb{R}^{d}$ be a nonempty set

$$
D \text { is E-Capra convex } \Longleftrightarrow\left\{\begin{array}{l}
D \text { is a cone, } \\
D \cup\{0\} \text { is closed, } \\
D \cap\{0\}=\overline{\operatorname{co}}(n(D)) \cap\{0\}
\end{array}\right.
$$

where $\overline{\text { co }}$ is the closed convex hull

The ℓ_{0} pseudonorm is not a norm

Let $d \in \mathbb{N}^{*}$

$$
\ell_{0}(x)=\sum_{i=1}^{d} 1_{\left\{x_{i} \neq 0\right\}}, \quad \forall x \in \mathbb{R}^{d}
$$

- The pseudonorm $\ell_{0}: \mathbb{R}^{d} \rightarrow \llbracket 0, d \rrbracket=\{0,1, \ldots, d\}$ satisfies 3 out of 4 axioms of a norm
- we have $\ell_{0}(x) \geq 0$
- we have $\left(\ell_{0}(x)=0 \Longleftrightarrow x=0\right)$
- we have $\ell_{0}\left(x+x^{\prime}\right) \leq \ell_{0}(x)+\ell_{0}\left(x^{\prime}\right)$ \checkmark
- But... 0-homogeneity holds true

$$
\ell_{0}(\rho x)=\ell_{0}(x), \quad \forall \rho \neq 0
$$

- We denote the level sets of the ℓ_{0} pseudonorm by

$$
\ell_{0}^{\leq k}=\left\{x \in \mathbb{R}^{d} \mid \ell_{0}(x) \leq k\right\}, \quad \forall k \in \llbracket 0, d \rrbracket
$$

E-Capra subdifferential of pseudonorm ℓ_{0}

[Chancelier and De Lara, 2022]

Proposition

The pseudonorm ℓ_{0} is E-Capra convex, meaning $\ell_{0}=\ell_{0}^{\text {¿C' }}{ }^{\prime}$
[Le Franc, Chancelier, and De Lara, 2022]

Proposition

Let $x \in \mathbb{R}^{d} \backslash\{0\}$ and $\operatorname{supp}(x)=\left\{i \in\{1, \ldots, d\} \mid x_{i} \neq 0\right\}$
For $y \in \mathbb{R}^{d}$, let the permutation $\nu:\{1, \ldots, d\} \rightarrow\{1, \ldots, d\}$ be such that $\left|y_{\nu(1)}\right| \geq \cdots \geq\left|y_{\nu(n)}\right|$

E-Capra subdifferential ratio ℓ_{1} / ℓ_{2}

Proposition

We define $\frac{\ell_{1}}{\ell_{2}}(0)=0$
Then, the function $\frac{\ell_{1}}{\ell_{2}}$ is E-Capra convex, meaning $\frac{\ell_{1}}{\ell_{2}}=\left(\frac{\ell_{1}}{\ell_{2}}\right)^{\mathrm{C} \dot{C}^{\prime}}$

Proposition

For any $x \in \mathbb{R}^{d}$, we have that

$$
y \in \partial_{\dot{C}}\left(\frac{\ell_{1}}{\ell_{2}}\right)(x) \Longleftrightarrow y=\operatorname{sign}(x)
$$

where the sign function sign : $\mathbb{R}^{d} \rightarrow\{-1,0,1\}^{d}$ is defined by

$$
\forall x \in \mathbb{R}^{d}, \operatorname{sign}(x)=\left\{\begin{array}{cl}
-1, & \text { if } x_{i}<0 \\
0, & \text { if } x_{i}=0 \\
1, & \text { if } x_{i}>0
\end{array}\right.
$$

Three problems with E-Capra convex objective function

- cone is the closed convex conical hull

Problems	Min of the ratio of two norms	Min of $\ell_{\mathbf{0}}$	Spark of a matrix
Objective function	$\ell_{\mathbf{1}} / \ell_{\mathbf{2}}$	$\ell_{\mathbf{0}}$	$\ell_{\mathbf{0}}$
Objective E-Capra convex	\checkmark	\checkmark	\checkmark
Feasible set	$\overline{\operatorname{cone}}\left(g_{\mathbf{1}}, \ldots g_{r}\right) \backslash\{0\}$	$\overline{\operatorname{cone}}\left(g_{\mathbf{1}}, \ldots g_{r}\right) \backslash\{0\}$	$\left\{x \in \mathbb{R}^{d} \backslash\{0\}: A x=0\right\}$
Feasible set E-Capra convex	\checkmark	\checkmark	

- The cone generators $\left\{g_{1}, \ldots g_{r}\right\} \subset \mathbb{R}^{d}$ are such that

$$
0 \notin \overline{\operatorname{co}}\left(n\left(\overline{\text { cone }}\left(g_{1}, \ldots g_{r}\right) \backslash\{0\}\right)\right)
$$

So $\overline{\text { cone }}\left(g_{1}, \ldots g_{r}\right) \backslash\{0\}$ is a E-Capra convex set

- The set $\left\{x \in \mathbb{R}^{d} \backslash\{0\}: A x=0\right\}$ is not E -Capra convex when the matrix A is singular

Three problems with E-Capra convex objective function

Problems	Min of the ratio of two norms	Min of $\ell_{\mathbf{0}}$	Spark of a matrix
Objective function	$\ell_{\mathbf{1}} / \ell_{\mathbf{2}}$	$\ell_{\mathbf{0}}$	$\ell_{\mathbf{0}}$
Objective E-Capra convex	\checkmark	\checkmark	\checkmark
Feasible set	$\overline{\operatorname{cone}}\left(g_{1}, \ldots g_{r}\right) \backslash\{0\}$	$\overline{\operatorname{cone}}\left(g_{\mathbf{1}}, \ldots g_{r}\right) \backslash\{0\}$	$\left\{x \in \mathbb{R}^{d} \backslash\{0\}: A x=0\right\}$
Feasible set E-Capra convex	\checkmark	\checkmark	

- Minimization of ℓ_{1} / ℓ_{2} :
toy example which satisfies the convergence
assumptions[Pallaschke and Rolewicz, 1997, Theorem 9.1.1]
- Minimization of the pseudonorm ℓ_{0} on a cone without 0 : more realistic, does not satisfy the convergence assumptions (ℓ_{0} not continuous)
- Computation of the spark of a matrix:
'semi' E-Capra convex problem
useful in compress sensing [Tillmann and Pfetsch, 2014]

Reformulation as a minimization program on the sphere

Proposition

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a E-Capra convex function, and let $K \subset \mathbb{R}^{d}$ be a E -Capra convex set
Then, the problem

$$
\inf _{x \in K \backslash\{0\}} f(x)
$$

has the same value than

$$
\begin{aligned}
& \inf _{\substack{x \in K \\
\ell_{2}(x)=1}} f(x) \\
& \hline
\end{aligned}
$$

and their solutions are the same up to normalization by the norm ℓ_{2}

E-Capra cutting plane method

Definition

Let $K=\operatorname{cone}\left(g_{1}, \ldots, g_{r}\right) \subset \mathbb{R}^{n}$ be an E-Capra convex cone Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an E -Capra convex function
We call the following algorithm the E-Capra cutting plane method

1. Set $k:=0$. Find $x_{0} \in K$ such that $\ell_{2}\left(x_{0}\right)=1$
2. Calculate an E-Capra subgradient $y^{k} \in \partial^{\mathcal{C}} f\left(x^{k}\right)$ Let $f_{-1}=-\infty$ and

$$
f_{k}=\max \{f_{k-1}, \underbrace{\left\langle\cdot, y_{k}\right\rangle-f^{¢}\left(y_{k}\right)\left\langle\cdot, y^{k}\right\rangle-f^{\dot{C}}\left(y^{k}\right)}_{\text {new cut }}\}
$$

3. Calculate an optimal solution $\widehat{x} \in \arg \min f_{k}(x)$

$$
\begin{aligned}
& x \in K \\
& \ell_{2}(x)=1
\end{aligned}
$$

4. Set $k:=k+1, x_{k}=\widehat{x}$ Repeat from Step 2 until a stop condition is satisfied

Difficulties with the E-Capra cutting plane method

- The norms of subgradients explode

$$
\ell_{2}\left(y^{k}\right) \underset{k \rightarrow \infty}{\longrightarrow} \infty
$$

\rightarrow Solution: project x^{k} on the i-th axis when $\left|x_{i}^{k}\right| \approx 0$ before computing $y^{k} \in \partial^{\dot{c}} f\left(x^{k}\right)$

- The sphere constraint $\ell_{2}(x)=1$ is not a convex constraint
\rightarrow Solution: use a nonlinear solver (here IpOpt) and add the constraint $\ell_{1}(x) \leq \quad \underbrace{\bar{\ell}_{0}^{k}}$ minimal known value of ℓ_{0} at step k subproblem

E-Capra cutting plane method with local search

Definition

We call the following algorithm the E-Capra cutting plane method with local search for the pseudonorm ℓ_{0}

1. Set a threshold $\varepsilon>0$ Set $k:=0$ Set the upper bound $\bar{\ell}_{0}^{k}=n$

Find $x_{0} \in K$ such that $\ell_{2}\left(x_{0}\right)=1$
2. For each $i \in\{1, \ldots, n\}$, if $\left|x_{i}^{k}\right|<\varepsilon$, set $x_{i}^{k}:=0$
3. Calculate an E-Capra subgradient $y^{k} \in \partial^{\dot{c}} f\left(x^{k}\right)$ Let $f_{-1}=-\infty$ and $f_{k}=\max \left\{f_{k-1},\left\langle\cdot, y_{k}\right\rangle-f^{C}\left(y_{k}\right)\right\}$
4. Calculate an optimal solution $\widehat{x} \in \underset{x \in K}{\arg \min } f_{k}(x)$

$$
\ell_{2}(x)=1, \quad \ell_{1}(x) \leq \bar{\ell}_{0}^{k}
$$

5. (Local search) Set $x^{k+1}:=\widehat{x}$.

Set the $1+\bar{\ell}_{0}^{k}$ smallest components of \widehat{x} to 0 .
If $\hat{x} \in K \backslash\{0\}$, set $\bar{\ell}_{0}^{k+1}:=\bar{\ell}_{0}^{k}-1$ and $x^{k+1}:=\widehat{x}$.
Otherwise, set $\bar{\ell}_{0}^{k+1}:=\bar{\ell}_{0}^{k}$
6. Set $k:=k+1$ Repeat from Step 2 until a stop condition is satisfied

Minimization of the ratio of two norms

Instances: visualization in the 2D case

Solving time for the ratio of two norms

Zoom on the low dimensions

Conclusion for the ratio of two norms

- The toy example converges (no surprise, convergence theorem assumptions are satisfied)
- Tighter cones lead to faster convergence
- Experimental observation: when the method finds the optimal solution it sticks to it for the following iterations
- Future tests: $\inf _{x \neq 0} \frac{\|A x\|}{\|x\|}$

Minimization of the pseudonorm ℓ_{0} over a finitely generated cone

Instances

Same instances as the minimization of the ratio of two norms

Solving time for pseudonorm ℓ_{0}

Relative gap $=\frac{\text { best value found-optimal value }}{\text { dimension }}$

Conclusion for the minimization of pseudonorm ℓ_{0} in a cone

- E-Capra cutting plane method does not converge for ℓ_{0}
- E-Capra cutting plane method with local search does not converge for ℓ_{0} beyond dimension 4
- Maybe the noncontinuity of ℓ_{0} is in cause

Computation spark of matrix

Definition of the spark of a matrix

Definition

Let $A \in \mathbb{R}^{m \times d}$ be a real matrix
Then, we call $\operatorname{spark}(A) \in=1, d, \ldots, \cup\{+\infty\}$ the spark of A which is given by

$$
\operatorname{spark}(A)=\min \left\{\ell_{0}(x) \mid A x=0, x \neq 0\right\}
$$

Proposition

Let $A \in \mathbb{R}^{m \times d}$ be a real matrix
Then, $\operatorname{spark}(A)$ is the smallest number of dependent columns of the matrix A

Examples for the spark of a matrix

$-\operatorname{spark}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)=1$
$-\operatorname{spark}\left(\begin{array}{ccc}-1 & 1 & 0 \\ 2 & -2 & 0 \\ 3 & -3 & 1\end{array}\right)=2$
$-\operatorname{spark}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=+\infty$
$-\operatorname{spark}\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)=3$

Brute force computing of the spark of a matrix

1. Set $s:=1$
2. For every family $\left\{A_{i_{1}}, \ldots, A_{i_{s}}\right\}$ of s columns of A if the family $\left\{A_{i_{1}}, \ldots, A_{i_{s}}\right\}$ is not free, stop and return s
3. Set $s:=s+1$

If $s \leq d$, repeat from Step
Otherwise, return $+\infty$

Generation of instances

- Instances:
square matrices $A \in \mathbb{R}^{d \times d}$ such that $\operatorname{spark}(A)=d / 2$
- We have used the following algorithm

1. Randomly choose $s-1$ vectors $A_{i} \in \mathbb{R}^{d}$.
2. Randomly choose $s-1$ real numbers $\mu_{i} \in \mathbb{R}$.
3. Compute the vector $A_{s}=\sum_{i=1}^{s-1} \mu_{i} A_{i}$.
4. Randomly choose $n-s$ vectors $A_{h} \in \mathbb{R}^{d}$.
5. Set the matrix $A=\left(A_{1}, \ldots, A_{n}\right)$.
6. Shuffle the columns of the matrix A.

Solving time comparison between brute force and E-CAPRA cutting plane for spark

Solving time for the E-Capra cutting plane method for spark

Conclusion for the computing of the spark of a Matrix

- Convergence even though the feasible set $\{x \neq 0 \mid A x=0\}$ is not E-CAPRA convex
- Converges faster than bruteforce
- No convergence for ℓ_{0} and convergence for spark maybe because
- $\left.\overline{\text { cone }(} g_{1}, \ldots, g_{r}\right)$ is a cone
- $\{x \neq 0 \mid A x=0\}$ is a vector space

Discussion

Conclusion of the numerical tests (1)

- Ranking of the problems by difficulty

1. (Toy example) the minimization of the ratio of the ℓ_{1} norm over the ℓ_{2} norm;
2. the computation of the spark of a square matrix;
3. the minimization of the ℓ_{0} pseudonorm in a blunt convex cone.

- Computing Spark is not E-Capra convex but converges Minimization of ℓ_{0} in a blunt cone is E-Capra but does not converge
- Future tests: see if the minimization of ℓ_{0} converges when the constraints are in 'dual' form $\{x \mid A x \leq 0\}$

