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First part: Perturbation-duality scheme in combinatorial
optimization

▶ Rewriting of Jeroslow's result

Perturbation-duality scheme
+

generalized conjugacy

▶ Linking

Perturbation-duality scheme
and

"Lagrangian" relaxation

▶ Proposing a quasi-a�ne dual problems for Pure Integer Linear
Programming
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Second part: Cutting plane methods for sparse optimization

▶ Implementation of cutting plane methods using
▶ results on CAPRA-convexity of ℓ0

[Chancelier and De Lara, 2020, 2021]

▶ and the calculation of its CAPRA-subdi�erentials
[Le Franc, 2021]

▶ Numerical tests on instances we generated in low dimension
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A closed convex set
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Usual de�nition of convexity by the interior

8 / 128



Equivalent de�nition for closed-convexity by the exterior
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Approximation by �nite number of cuts
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Epigraph of a closed-convex function

y = x2
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The epigraph is above its tangents

y = x2
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Approximation by a �nite number of cuts

y = x2
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Example of a nonconvex set
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Some tangents won't stay outside!
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Generalized convexity: we change the shape of the tangents!
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Coming next: generalized convexity of Gomory function

y = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
}
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Application of the scheme to Linear Programming

Initial minimization problem

inf
x

⟨x , k⟩
Ax = b0
x ∈ Qn

+
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Step 1. Perturbation of the initial minimization problem

∀b ∈ Qm , φ(b) = inf
x

⟨x , k⟩
Ax = b
x ∈ Qn

+

▶ Perturbation space: Qm

▶ Perturbation function φ : Qm → R
▶ Value of the initial problem: φ(b0)
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Epigraph of the perturbation function

φ(b) = max{−5b − 5,−3b + 1, 3, b}
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Step 2. Coupling and conjugate function

▶ Perturbation function

∀b ∈ Qm , φ(b) = inf
x

⟨x , k⟩
Ax = b
x ∈ Qn

+

▶ Coupling ⟨·, ·⟩ : Qm ×Qm → R
▶ Conjugate function φ⋆ : Qm → R

∀p ∈ Qm , φ⋆(p) = sup
b∈Qm

{
⟨b, p⟩ − φ(b)

}
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Step 3. Biconjugate and weak duality

▶ Biconjugate function φ⋆⋆′ : Qm → R

∀b ∈ Qm , φ⋆⋆′(b) = sup
p∈Qm

{
⋆(b, p) ·+

(
−φ⋆(p)

)}
▶ Weak duality

φ⋆⋆′(b) ≤ φ(b)
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Step 4. Closed convexity and strong duality

▶ φ is lower-semi-continuous convex

▶ So we have strong duality

φ⋆⋆′(b) = φ(b)
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Summary of the perturbation-duality scheme

[Rockafellar, 1974]

1. We perturb a minimization problem

∀b ∈ Qm , φ(b) = inf
x
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Introducing generalized convexity

[Balder, 1977]

Fenchel conjugate c-conjugate
f ⋆(v) = sup

u∈Rm
⟨u, v⟩ − f (u) g c(v) = sup

u∈U
c(u, v) ·+

(
−g(u)

)
Fenchel biconjugate c-biconjugate

f ⋆⋆
′
(u) = sup

v∈Rm
⟨u, v⟩ − f ⋆(v) g cc ′(u) = sup

v∈V
c(u, v) ·+

(
−g c(v)

)
lsc convex functions c-convex functions

⇐⇒ f = f ⋆⋆
′

: ⇐⇒ g = g cc ′
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Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

φ : Rm → R
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Strong duality in LP

▶
Dual problem

sup
p

⟨p, b0⟩

pTA ≤ k
p ∈ Qm

=︸︷︷︸
strong duality

"Primal" problem

inf
x

⟨x , k⟩
Ax = b0
x ∈ Qn

+

▶ Complementary slackness

x̂j
(
kj − p̂TAj

)
= 0 , ∀j ∈= 1, . . . , n
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Weak duality in PILP

▶
Dual problem

sup
p

⟨p, b0⟩

pTA ≤ k
p ∈ Qm

≤︸︷︷︸
weak duality

"Primal" problem

inf
x

⟨x , k⟩
Ax = b0
x ∈ Zn

+

▶ Complementary slackness

???
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Subadditive dual problem of Jeroslow

▶ [Jeroslow, 1979]

dual problem

sup
F

F (b0)

F (Aj) ≤ kj
F (0) ≤ 0

F is subadditive

=︸︷︷︸
strong duality

"primal" problem

inf
x

⟨x , k⟩
Ax = b0
x ∈ Zn

+

▶ Complementary slackness

xj
(
kj − F (aj)

)
= 0 , ∀j = 1, . . . , n

n∑
j=1

F (Aj)xj = F (b0)
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Link between Jeroslow's result and perturbation-duality scheme?
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Which scheme for PILP duality?

▶ We de�ne a perturbation function G : Qm → R

∀b ∈ Qm , G (b) = inf
x

⟨x , k⟩
Ax = b
x ∈ Zn

+

▶ We de�ne a coupling between primal and dual space

c : Qm×?? → R

▶ We biconjugate the perturbation function

G cc ′(b) ≤ G (b) , ∀b ∈ Qm︸ ︷︷ ︸
weak duality
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De�nition of Chvátal functions

De�nition

The class of Chvátal functions Cm

is the smallest class of functions D ⊂ {f |f : Qm → Q} such that

b ∈ Qm 7→ λb ∈ D , ∀b ∈ Qm (linear functions)

αF1 + βF2 ∈ D , ∀F1,F2 ∈ D , α, β ∈ Q+

(conic combination)

⌈F ⌉ ∈ D , ∀F ∈ D (round-up)

Examples in 1D

▶ b 7→ 3
4b

▶ b 7→ ⌈b⌉
▶ b 7→ 3

4b + 7
10⌈b⌉

▶ b 7→ 15b + 39
22

⌈
3
4b + 7

10⌈b⌉
⌉
+ ⌈16b⌉

40 / 128



Jeroslow's dual problem with Chvátal functions

Chvátal function class: Cm

[Jeroslow, 1979] [Blair and Jeroslow, 1982]

sup
F

F (b0)

F (Aj) ≤ kj
F (0) ≤ 0

F est sous-add.

=

sup
F

F (b0)

F (Aj) ≤ kj
F (0) ≤ 0
F ∈ Cm

strong duality with initial PILP is achieved for both!
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Chvátal perturbation-duality scheme
▶ We de�ne a perturbation function

∀b ∈ Qm , G (b) = inf
x

⟨x , k⟩
Ax = b
x ∈ Zn

+

▶ We de�ne a coupling between primal and dual space

cC : Qm × Cm → R
cC(b,F ) = F (b) , ∀b ∈ Qm , ∀F ∈ Cm

▶ We biconjugate the perturbation functions

G cCcC
′
(b) ≤ G (b) , ∀b ∈ Qm︸ ︷︷ ︸

weak duality

▶ We get strong duality G cCcC
′
(b0) = G (b0)
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Obtained dual problems

Formulation 1:

G cCcC
′
(b0) = supF∈Cm

{
F (b0) + inf

b∈Qm

{
G (b)− F (b)

}}
Formulation 2:

G cCcC
′
(b0) = supF∈Cm

{
F (b0) + infx∈Zn

+

{
⟨x , k⟩ − F (Ax)

}}
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Formulation 2:

G cCcC
′
(b0) = supF∈Cm

{
F (b0) + infx∈Zn

+

{
⟨x , k⟩ − F (Ax)

}}
Reminder Jeroslow's dual problem

sup
F

F (b0)

F (Aj) ≤ kj
F (0) ≤ 0
F ∈ Cm
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Generalized subdi�erential and complementary slackness
Proposition

▶ G : bounded perturbation function of a MILP

▶ A =
(
Aj

)
j=1,...,n

∈ Qm×n constraint matrix

▶ b0 ∈ Qn anchor

If x̂ ∈ {x ∈ Zn
+|Ax = b0} and F̂ ∈ Cm are "primal"-dual optimal

solutions then we have the equivalence

F̂ ∈ ∂cCG (b0)

⇐⇒ −k ∈ ∂
(
−F̂ ◦ A∔ δZn

+

)
(x̂)

Furthermore, if F̂ (Aj) ≤ kj , ∀j = 1, . . . , n, then the following asser-
tion is also equivalent

F̂ (0) ≤ 0 , F̂ (b0) = G (b0) and
(
kj − F̂ (Aj)

)
x̂j = 0 , ∀j = 1, . . . , n .
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Epigraph of a perturbation function for a PILP

G (b) = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
}
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Limitations of Chvátal functions

▶ Solve the dual problem of Jeroslow: which algorithm?
([Klabjan, 2007] )

▶ Expression of a Chvátal function F ∈ Cm: no limit on the
number of ⌈·⌉
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Proposed relaxation: quasia�ne program

▶ Relaxation : considering a subclass of Chvátal functions

Example

α ∈ Q+

supλ∈Qm ⟨λ, b0⟩+ α⌈⟨λ, b0⟩⌉
⟨λ, Aj⟩+ α⌈⟨λ, Aj⟩⌉ ≤ kj ,

∀j ∈ {1, . . . , n}
(1)

▶ This program is quasia�ne! [Martínez-Legaz, 2005]

52 / 128



SECOND PART
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ℓ0 pseudonorm and sparse optimization

De�nition

The pseudonorm ℓ0 : Rd → {0, . . . , d}

ℓ0(x) = #nonnull components of x , ∀x ∈ Rd

▶ Examples: ℓ0

 1
0

−50

 = 2, ℓ0

0
0
3

 = 1, ℓ0

0
0
0

 = 0.

▶ Application in compressive sensing, image recovery, minimum
description length
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E-Capra conjugacy and E-Capra convex sets

The norm ℓ2 : Rd → R+ ℓ2(x) =
√∑d

i=1 x
2
i

De�nition

Normalization mapping n : Rd → Rd

∀x ∈ Rd , n(x) =

{
x/ℓ2(x), if x ̸= 0

0, if x = 0

Coupling Euclidean Constant Along PRimal RAy (E-CAPRA) ¢ :
Rd × Rd → R

¢(x , y) = ⟨n(x), y⟩ , ∀x , y ∈ Rd

[Chancelier and De Lara, 2022]

Proposition

The pseudonorm ℓ0 is E-Capra convex, meaning ℓ0 = ℓ
¢¢′

0
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Three considered problems

Problems Min of Min of ℓ0 Matrix spark
norms ratio

Objective fun. ℓ1/ℓ2 ℓ0 ℓ0
E-Capra convex ✓ ✓ ✓

Feasible set cone(g1, . . . gr ) \ {0} cone(g1, . . . gr ) \ {0}
{
x ∈ Rd \ {0} : Ax = 0

}
E-Capra convex ✓ ✓
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Examples and counterexamples of E-Capra convex sets
Examples

Counterexamples
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Cutting plane method in action
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Cutting plane method in action
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Cutting plane method in action
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Cutting plane method in action
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ℓ0 graph on the sphere in R3
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E-Capra cuts
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E-Capra cuts
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E-Capra cuts
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E-Capra cuts
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E-Capra cuts
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E-Capra cuts
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Solving time for the ratio of norms
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Relative gap for ℓ0 minimization

Relative gap = best found value−optimal value
dimension
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Solving time comparison between Brute Force and cutting
plane
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Generalized convexity for PILP

▶ Clari�cation on the notion of dual problems

▶ A new dual problem for PILP

▶ Sensitivity analysis in PILP [Wolsey, 1981]
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Abstract convex methods for generalized convexity

▶ Cutting plane method ↔ Gomory cutting plane method

▶ Other : Branch-and-Bound, Tabu search, variants with local
search [Rubinov, 2000]
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Spatial branch-and-bound
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Thank you for your attention!
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Moreau lower and upper additions

R = R ∪ {−∞} ∪ {+∞} = [−∞,+∞]

Moreau lower and upper additions extend the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞
(+∞)∔ (−∞) = (−∞)∔ (+∞) = +∞
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Coupling
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Background on couplings and Fenchel-Moreau conjugacies
De�nition

Two vector spaces X and Y, paired by a bilinear form ⟨ , ⟩
give rise to the classic Fenchel conjugacy

f ∈ RX 7→ f ⋆ ∈ RY

f ⋆(y) = sup
x∈X

(
⟨x , y⟩+

(
−f (x)

))
, ∀y ∈ Y

▶ Let be given two sets X (�primal�) and Y (�dual�)
not necessarily paired vector spaces (nodes and arcs, etc.)

▶ We consider a coupling function

c : X× Y → R

We also use the notation X c↔ Y for a coupling

[Martínez-Legaz, 2005]
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Conjugacy
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Fenchel-Moreau conjugate and biconjugate

f ∈ RX 7→ f c ∈ RY

De�nition

The c-Fenchel-Moreau conjugate of a function f : X → R, with
respect to the coupling c , is the function f c : Y → R de�ned by

f c(y) = sup
x∈X

(
c(x , y) ·+

(
−f (x)

))
, ∀y ∈ Y

The c-Fenchel-Moreau biconjugate f cc
′
: X → R is given by

f cc
′
(x) =

(
f c
)c ′

(x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))
, ∀x ∈ X

85 / 128



Fenchel-Moreau biconjugate

With the coupling c , we associate the reverse coupling c ′

c ′ : Y× X → R , c ′(y , x) = c(x , y) , ∀(y , x) ∈ Y× X

▶ The c ′-Fenchel-Moreau conjugate of a function g : Y → R,
with respect to the coupling c ′, is the function g c ′ : X → R

g c ′(x) = sup
y∈Y

(
c(x , y) ·+

(
−g(y)

))
, ∀x ∈ X

▶ The c-Fenchel-Moreau biconjugate f cc
′
: X → R

of a function f : X → R is given by

f cc
′
(x) =

(
f c
)c ′

(x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))
, ∀x ∈ X
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So-called c-convex functions have dual representations
For any function f : X → R, one has that

f cc
′ ≤ f

De�nition

The function f : X → R is c-convex if f cc
′
= f

If the function f : X → R is c-convex, we have

f (x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))︸ ︷︷ ︸
elementary function of x

, ∀x ∈ X

Example: ⋆-convex functions
= closed convex functions [Rockafellar, 1974, p. 15]
= proper convex lsc or ≡ −∞ or ≡ +∞
= suprema of a�ne functions
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Subdi�erential
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Subdi�erential(s) ∂c f , ∂c f , ∂
c
c f : X ⇒ Y of a conjugacy

For any function f : X → R and x ∈ X, y ∈ Y,
De�nition

Upper subdi�erential (following Martinez-Legaz and Singer [1995])

y ∈ ∂c f (x) ⇐⇒ f (x) = c(x , y) ·+
(
−f c(y)

)
Middle subdi�erential (�à la Fenchel-Young�)

y ∈ ∂cc f (x) ⇐⇒ f (x)∔ f c(y) = c(x , y)

Lower subdi�erential (�à la Rockafellar-Moreau�)

y ∈ ∂c f (x) ⇐⇒ f c(y) = c(x , y) ·+
(
−f (x)

)
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Properties of subdi�erentials

▶ The upper subdi�erential ∂c f has the property that

∂c f (x) ̸= ∅ ⇒ f cc
′
(x) = f (x)︸ ︷︷ ︸

the function f is c-convex at x

▶ The lower subdi�erential ∂c f is characterized by

y ∈ ∂c f (x) ⇐⇒ x ∈ argmax
x ′∈X

[
c(x ′, y) ·+

(
−f (x ′)

)]
⇐⇒ c(x ′, y) ·+

(
−f (x ′)

)
≤ c(x , y) ·+

(
−f (x)

)
, ∀x ′ ∈ X

▶ All de�nitions coincide when
−∞ < c < +∞ and −∞ < f (x) < +∞
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Dual problems: perturbation scheme [Rockafellar, 1974]
▶ Set W, function h : W → R

and original minimization problem

inf
w∈W

h(w)

▶ Embedding/perturbation scheme given by
a nonempty set X (perturbations), an element x ∈ X (anchor)
and a function (Rockafellian) R : W× X → R such that

h(w) = R(w , x)

▶ Perturbation function

ϕ(x) = inf
w∈W

R(w , x)

▶ Original minimization problem

ϕ(x) = inf
w∈W

R(w , x) = inf
w∈W

h(w)
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Dual problems: conjugacy, weak and strong duality

▶ Coupling X c↔ Y, and Lagrangian L : W× Y → R given by

L(w , y) = inf
x∈X

{
R(w , x)∔

(
−c(x , y)

)}
▶ Dual function

ψ(y) = −ϕc(y) = inf
w∈W

L(w , y)

▶ Dual maximization problem (weak duality)

ϕcc
′
(x) = sup

y∈Y

{
c(x , y) ·+ ψ(y)

}
≤ inf

w∈W
h(w) = ϕ(x)

▶ Strong duality holds true when ϕ is c-convex at x , that is,

ϕcc
′
(x) = sup

y∈Y

{
c(x , y) ·+ ψ(y)

}
= inf

w∈W
h(w) = ϕ(x)
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Dual problems: perturbation scheme [Rockafellar, 1974]

sets optimization primal coupling dual

set W set X X c↔ Y set Y
variables decision perturbation c(x , y) sensitivity

w ∈ W x ∈ X ∈ R y ∈ Y
bivariate Rockafellian Lagrangian

functions R : W× X → R L : W× Y → R
de�nition L(w , y) =

infx∈X

{
R(w , x)∔

(
−c(x , y)

)}
property −L(w , ·) =

(
R(w , ·)

)c
property −L(w , ·) is c ′-convex
univariate perturbation function dual function

functions ϕ : X → R ψ : Y → R
de�nition ϕ(x) = infw∈WR(w , x) ψ(y) = infw∈W L(w , y)
property −ψ = ϕc

Anchor x ∈ X and dual maximization problem (weak duality)
ϕcc

′
(x) = supy∈Y

{
c(x , y) ·+ ψ(y)

}
≤ infw∈W h(w) = ϕ(x)

Strong duality i� ϕ is c-convex at x i� ϕcc
′
(x) = ϕ(x)
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Abstract cutting plane method

[Rubinov, 2000, �9.2.3]

De�nition

Let W be a set, H ⊂ RW
be a set of elementary functions, and

f : W → R be a H-convex function

1. Set k := 0. Choose an arbitrary initial point w0 ∈ W
2. Calculate an abstract subgradient hk ∈ ∂H f (wk)

Let f−1 = −∞ and

fk = max{fk−1, hk︸︷︷︸
new cut

}

3. Calculate an optimal solution ŵ ∈ argminw∈W fk(w)

4. Set k := k + 1, wk = ŵ
Repeat from Step 2 until a stop condition is satis�ed

96 / 128



Abstract cutting plane method: convergence result

[Pallaschke and Rolewicz, 1997, Theorem 9.1.1]

Theorem

Let

▶ (W, d) be a metric space

▶ H be a family of real-valued locally uniform continuous
functions h : W → R,

▶ f : W → R be a continuous H-convex function

Then, all accumulation points of the sequence {wk}k∈N
generated by the abstract cutting plane method
are minimizers of the function f
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E-Capra conjugacy

The ℓ2 : Rd → R+ norm is de�ned by ℓ2(x) =
√∑d

i=1 x
2
i

De�nition

Let n : Rd → Rd be the normalization mapping given by

∀x ∈ Rd , n(x) =

{
x/ℓ2(x), if x ̸= 0

0, if x = 0

We de�ne the Euclidean Constant Along PRimal RAy (E-CAPRA)
coupling ¢ : Rd × Rd → R by

¢(x , y) = ⟨n(x), y⟩ , ∀x , y ∈ Rd
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De�nition and characterization of E-Capra convex sets

De�nition

We say that the set D ⊂ Rd is E-Capra convex if ιD = ι
¢¢′

D meaning
the indicator function ιD is a E-Capra convex function

[Le Franc, 2021, Proposition 6.2.6]

Proposition

Let D ⊆ Rd be a nonempty set

D is E-Capra convex ⇐⇒


D is a cone,
D ∪ {0} is closed,
D ∩ {0} = co

(
n(D)

)
∩ {0}

where co is the closed convex hull
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The ℓ0 pseudonorm is not a norm

Let d ∈ N∗

ℓ0(x) =
d∑

i=1

1{xi ̸=0} , ∀x ∈ Rd

▶ The pseudonorm ℓ0 : Rd → J0, dK = {0, 1, . . . , d}
satis�es 3 out of 4 axioms of a norm
▶ we have ℓ0(x) ≥ 0 ✓
▶ we have

(
ℓ0(x) = 0 ⇐⇒ x = 0

)
✓

▶ we have ℓ0(x + x ′) ≤ ℓ0(x) + ℓ0(x
′) ✓

▶ But... 0-homogeneity holds true

ℓ0(ρx) = ℓ0(x) , ∀ρ ̸= 0

▶ We denote the level sets of the ℓ0 pseudonorm by

ℓ≤k
0 =

{
x ∈ Rd

∣∣ ℓ0(x) ≤ k
}
, ∀k ∈ J0, dK
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E-Capra subdi�erential of pseudonorm ℓ0
[Chancelier and De Lara, 2022]

Proposition

The pseudonorm ℓ0 is E-Capra convex, meaning ℓ0 = ℓ
¢¢′

0

[Le Franc, Chancelier, and De Lara, 2022]

Proposition

Let x ∈ Rd \ {0} and supp(x) =
{
i ∈ {1, . . . , d}

∣∣xi ̸= 0
}

For y ∈ Rd , let the permutation ν : {1, . . . , d} → {1, . . . , d}be such
that |yν(1)| ≥ · · · ≥ |yν(n)|

y ∈ ∂¢ℓ0(x) ⇐⇒


∃λ ∈ R+ , yi = λxi , ∀i ∈ supp(x) ,

|yj | ≤ mini∈supp(x)|yi | , ∀j /∈ supp(x) ,
|yν(k+1)|2 ≥ (∥y∥tnk,2 + 1)2 − (∥y∥tnk,2)

2 ,

∀k ∈ {0, . . . , ℓ0(x)− 1} ,

|yν(ℓ0(x)+1)|
2 ≤ (∥y∥tnℓ0(x),2 + 1)2 − (∥y∥tnℓ0(x),2)

2 ,

∀k ∈ {0, . . . , ℓ0(x)− 1} .
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E-Capra subdi�erential ratio ℓ1/ℓ2

Proposition

We de�ne ℓ1
ℓ2
(0) = 0

Then, the function ℓ1
ℓ2

is E-Capra convex, meaning ℓ1
ℓ2

=
(
ℓ1
ℓ2

)¢¢′

Proposition

For any x ∈ Rd , we have that

y ∈ ∂¢
(ℓ1
ℓ2

)
(x) ⇐⇒ y = sign(x)

where the sign function sign : Rd → {−1, 0, 1}d is de�ned by

∀x ∈ Rd , sign(x) =


−1, if xi < 0
0, if xi = 0
1, if xi > 0
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Three problems with E-Capra convex objective function

▶ cone is the closed convex conical hull

Problems Min of the ratio Min of ℓ0 Spark of a matrix
of two norms

Objective function ℓ1/ℓ2 ℓ0 ℓ0
Objective E-Capra convex ✓ ✓ ✓

Feasible set cone(g1, . . . gr ) \ {0} cone(g1, . . . gr ) \ {0}
{
x ∈ Rd \ {0} : Ax = 0

}
Feasible set E-Capra convex ✓ ✓

▶ The cone generators {g1, . . . gr} ⊂ Rd are such that

0 /∈ co

(
n
(
cone(g1, . . . gr ) \ {0}

))
So cone(g1, . . . gr ) \ {0} is a E-Capra convex set

▶ The set
{
x ∈ Rd \ {0} : Ax = 0

}
is

not E-Capra convex when the matrix A is singular
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Three problems with E-Capra convex objective function

Problems Min of the ratio Min of ℓ0 Spark of a matrix
of two norms

Objective function ℓ1/ℓ2 ℓ0 ℓ0
Objective E-Capra convex ✓ ✓ ✓

Feasible set cone(g1, . . . gr ) \ {0} cone(g1, . . . gr ) \ {0}
{
x ∈ Rd \ {0} : Ax = 0

}
Feasible set E-Capra convex ✓ ✓

▶ Minimization of ℓ1/ℓ2:
toy example which satis�es the convergence
assumptions[Pallaschke and Rolewicz, 1997, Theorem 9.1.1]

▶ Minimization of the pseudonorm ℓ0 on a cone without 0:
more realistic, does not satisfy the convergence assumptions
(ℓ0 not continuous)

▶ Computation of the spark of a matrix:
`semi' E-Capra convex problem
useful in compress sensing [Tillmann and Pfetsch, 2014]
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Reformulation as a minimization program on the sphere

Proposition

Let f : Rd → R be a E-Capra convex function,
and let K ⊂ Rd be a E-Capra convex set

Then, the problem

inf
x∈K\{0}

f (x)

has the same value than

inf
x∈K

f (x)

ℓ2(x) = 1

and their solutions are the same up to normalization by the norm ℓ2
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E-Capra cutting plane method
De�nition

Let K = cone(g1, . . . , gr ) ⊂ Rn be an E-Capra convex cone
Let f : Rn → R be an E-Capra convex function
We call the following algorithm the E-Capra cutting plane method

1. Set k := 0. Find x0 ∈ K such that ℓ2(x0) = 1

2. Calculate an E-Capra subgradient yk ∈ ∂¢f (xk)
Let f−1 = −∞ and

fk = max{fk−1, ⟨·, yk⟩ − f ¢(yk)⟨·, yk⟩ − f ¢(yk)︸ ︷︷ ︸
new cut

}

3. Calculate an optimal solution x̂ ∈ argmin
x∈K

ℓ2(x)=1

fk(x)

4. Set k := k + 1, xk = x̂
Repeat from Step 2 until a stop condition is satis�ed
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Di�culties with the E-Capra cutting plane method

▶ The norms of subgradients explode

ℓ2(y
k) −−−→

k→∞
∞

→ Solution: project xk on the i-th axis when |xki | ≈ 0 before

computing yk ∈ ∂¢f (xk)
▶ The sphere constraint ℓ2(x) = 1 is not a convex constraint

→ Solution: use a nonlinear solver (here IpOpt) and add the

constraint ℓ1(x) ≤ ℓ
k
0︸︷︷︸

minimal known value of ℓ0 at step k

to the

subproblem
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E-Capra cutting plane method with local search

De�nition

We call the following algorithm the E-Capra cutting plane method
with local search for the pseudonorm ℓ0

1. Set a threshold ε > 0 Set k := 0 Set the upper bound ℓ
k
0 = n

Find x0 ∈ K such that ℓ2(x0) = 1

2. For each i ∈ {1, . . . , n}, if |xk
i | < ε, set xk

i := 0

3. Calculate an E-Capra subgradient y k ∈ ∂¢f (xk)

Let f−1 = −∞ and fk = max{fk−1, ⟨·, yk⟩ − f ¢(yk)}

4. Calculate an optimal solution x̂ ∈ argmin
x∈K

ℓ2(x)=1 , ℓ1(x)≤ℓ
k
0

fk(x)

5. (Local search) Set xk+1 := x̂ .

Set the 1+ ℓ
k
0 smallest components of x̂ to 0.

If x̂ ∈ K \ {0}, set ℓk+10 := ℓ
k
0 − 1 and xk+1 := x̂ .

Otherwise, set ℓ
k+1
0 := ℓ

k
0

6. Set k := k + 1 Repeat from Step 2 until a stop condition is satis�ed
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Minimization of the ratio of two norms
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Instances: visualization in the 2D case
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Solving time for the ratio of two norms
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Zoom on the low dimensions
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Conclusion for the ratio of two norms

▶ The toy example converges (no surprise, convergence theorem
assumptions are satis�ed)

▶ Tighter cones lead to faster convergence

▶ Experimental observation: when the method �nds the optimal
solution it sticks to it for the following iterations

▶ Future tests: infx ̸=0
∥Ax∥
∥x∥
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Minimization of the pseudonorm ℓ0 over a �nitely generated cone
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Instances

Same instances as the minimization of the ratio of two norms
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Solving time for pseudonorm ℓ0

Relative gap = best value found−optimal value
dimension
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Conclusion for the minimization of pseudonorm ℓ0 in a cone

▶ E-Capra cutting plane method does not converge for ℓ0

▶ E-Capra cutting plane method with local search does not
converge for ℓ0 beyond dimension 4

▶ Maybe the noncontinuity of ℓ0 is in cause
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Computation spark of matrix
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De�nition of the spark of a matrix

De�nition

Let A ∈ Rm×d be a real matrix
Then, we call spark(A) ∈= 1, d , . . . ,∪{+∞} the spark of A which
is given by

spark(A) = min
{
ℓ0(x)

∣∣Ax = 0 , x ̸= 0
}

Proposition

Let A ∈ Rm×d be a real matrix
Then, spark(A) is the smallest number of dependent columns of the
matrix A
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Examples for the spark of a matrix

▶ spark

1 0 0
0 1 0
0 0 0

 = 1

▶ spark

−1 1 0
2 −2 0
3 −3 1

 = 2

▶ spark

1 0 0
0 1 0
0 0 1

 = +∞

▶ spark

1 0 1
0 1 1
1 1 1

 = 3
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Brute force computing of the spark of a matrix

1. Set s := 1

2. For every family {Ai1 , . . . ,Ais} of s columns of A
if the family {Ai1 , . . . ,Ais} is not free, stop and return s

3. Set s := s + 1
If s ≤ d , repeat from Step
Otherwise, return +∞
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Generation of instances

▶ Instances:
square matrices A ∈ Rd×d such that spark(A) = d/2

▶ We have used the following algorithm

1. Randomly choose s − 1 vectors Ai ∈ Rd .
2. Randomly choose s − 1 real numbers µi ∈ R.
3. Compute the vector As =

∑s−1

i=1
µiAi .

4. Randomly choose n − s vectors Ah ∈ Rd .
5. Set the matrix A =

(
A1, . . . ,An

)
.

6. Shu�e the columns of the matrix A.
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Solving time comparison between brute force and E-CAPRA
cutting plane for spark
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Solving time for the E-Capra cutting plane method for spark

125 / 128



Conclusion for the computing of the spark of a Matrix

▶ Convergence even though the feasible set {x ̸= 0|Ax = 0} is
not E-CAPRA convex

▶ Converges faster than bruteforce

▶ No convergence for ℓ0 and convergence for spark
maybe because
▶ cone(g1, . . . , gr ) is a cone
▶ {x ̸= 0|Ax = 0} is a vector space
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Discussion
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Conclusion of the numerical tests (1)

▶ Ranking of the problems by di�culty

1. (Toy example) the minimization of the ratio of the ℓ1 norm
over the ℓ2 norm;

2. the computation of the spark of a square matrix;
3. the minimization of the ℓ0 pseudonorm in a blunt convex cone.

▶ Computing Spark is not E-Capra convex but converges
Minimization of ℓ0 in a blunt cone is E-Capra but does not
converge

▶ Future tests: see if the minimization of ℓ0 converges when the
constraints are in 'dual' form {x |Ax ≤ 0}
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