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First part: Perturbation-duality scheme in combinatorial
optimization
» Rewriting of Jeroslow's result

Perturbation-duality scheme
+
generalized conjugacy

» Linking
Perturbation-duality scheme
and
""Lagrangian" relaxation

» Proposing a quasi-affine dual problems for Pure Integer Linear
Programming
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Second part: Cutting plane methods for sparse optimization

» Implementation of cutting plane methods using

» results on CAPRA-convexity of £
[Chancelier and De Lara, 2020, 2021]

» and the calculation of its CAPRA-subdifferentials
[Le Franc, 2021]

» Numerical tests on instances we generated in low dimension
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Outline

Overview of generalized convexity and duality
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Outline

Overview of generalized convexity and duality
Generalized convexity
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A closed convex set
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Usual definition of convexity by the interior
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Equivalent definition for closed-convexity by the exterior
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Equivalent definition for closed-convexity by the exterior
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Equivalent definition for closed-convexity by the exterior




Approximation by finite number of cuts
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Epigraph of a closed-convex function
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Epigraph of a closed-convex function

y=x
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The epigraph is above its tangents




Approximation by a finite number of cuts
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Example of a nonconvex set
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Some tangents won't stay outside!
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Generalized convexity: we change the shape of the tangents!
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Generalized convexity: we change the shape of the tangents!

T(x)=(x,a)+ 8, ¥ xeR"
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Generalized convexity: we change the shape of the tangents!

T(x)=(x,a)+p, ¥xeR"
Scalar product (-, -) : R" x R”

Slope: a € R”
Intercept: 5 € R

20/128



Generalized convexity: we change the shape of the tangents!

T(x)=(x,a)+p, VxeR"

Scalar product (-, -) : R" x R”
Slope: a € R”
Intercept: S € R

T(u)=c(u,v)+p
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Generalized convexity: we change the shape of the tangents!

T(x)=(x, )+ B, VxeR"
Scalar product (-, -) : R” x R”

Slope: v € R”
Intercept: 8 € R

T(w) = c(u,v) + 8
Coupling c: Ux V - R =RU{-o00,+00}

Slope: ve VvV
Intercept: S € R
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Coming next: generalized convexity of Gomory function

y =max{3b+ [b],2b+ —3[b],—3b+ [2b] + [Sb]}

Qe
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Outline

Overview of generalized convexity and duality

Duality by the perturbation-duality scheme of Rockafellar
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Application of the scheme to Linear Programming

Initial minimization problem

inf (x, k)
Ax = bo
x € Q'
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Step 1. Perturbation of the initial minimization problem

VbeQm, ¢(b)= inf (x, k)
Ax =b
x e Q}

» Perturbation space: Q™
» Perturbation function ¢ : Q™ — R
» Value of the initial problem: ¢(by)
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Epigraph of the perturbation function

©(b) = max{—5b—5,-3b+1,3,b}

T Polyhédrique

Qe
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Step 2. Coupling and conjugate function

» Perturbation function

Vb e Q" , ¢(b) = inf (x, k)
Ax=b
x € Q]
» Coupling (-, ) : Q" x Q" =R
» Conjugate function ¢* : Q™ — R

VpeQ", ¢*(p) = sup {(b, p) — p(b)}
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Step 3. Biconjugate and weak duality

> Biconjugate function o** : Q" — R

b eQ”. @ (b) = sup {x(b.p) + (~"(p))}

> Weak duality

/

@™ (b) < ¢(b)
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Step 3. Biconjugate and weak duality

> Biconjugate function ¢** : Q" — R

beQ”. @ (b) = sup {x(b.p) + (~'(p))}

» Property of biconjugacy

/

@™ (b) < ¢(b)
> Weak duality

ir}(f (x, k)
e (b)<p(b)=  Ax=b
x e Qf
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Step 3. Biconjugate and weak duality

> Biconjugate function ¢** : Q" — R

VbeQ™, ¢**'(b) = sup {x(b,p) + (—¢*(p))}

peQm

» Property of biconjugacy

@™ (b) < ¢(b)

> Weak duality

sup {p, b)

P Kok
pTA < k =™ (b) < ¢(b) =
peQm

inf

Ax=b

xeQ

n

+

{x; k)
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Step 4. Closed convexity and strong duality

»  is lower-semi-continuous convex

» So we have strong duality

™ (b) = o (b)

Qe
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Step 4. Closed convexity and strong duality

» o is lower-semi-continuous convex

» So we have strong duality

sup (p, bo) inf
P ’ X

pTA< k =™ (b)=¢(b)= Ax=0b

peQm

xe€Qf

{x; k)

Qe
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Summary of the perturbation-duality scheme

[Rockafellar, 1974]
1. We perturb a minimization problem
VbeQm, ¢(b) = inf (x, k)

Ax=b
x € Qf
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Summary of the perturbation-duality scheme

[Rockafellar, 1974]

1. We perturb a minimization problem

Vbe Q" , o(b) = inf (x, k)
Ax=b
x € Q1

2. We pair a primal space Q™ and a dual space Q™

(,9:Q"xQ™ =R
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Summary of the perturbation-duality scheme

[Rockafellar, 1974]

1. We perturb a minimization problem

Vbe Q" , ¢(b) = inf (x, k)
Ax=b
x € Q]

2. We pair a primal space Q™ and a dual space Q"
(,:Q"xQ™ =R
3. We biconjugate the perturbation function ¢

¢ (b) < ¢(b), V¥be Q™

Weak duality is guaranteed!
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Summary of the perturbation-duality scheme
[Rockafellar, 1974]

1. We perturb a minimization problem

Vbe Q" , ¢(b) = inf (x, k)
Ax=b
x € Q}

2. We pair a primal space Q™ and a dual space Q™
(,9:Q"xQ" =R
3. We biconjugate the perturbation function ¢

¢ (b) < p(b) , Vbe Q™

Weak duality is guaranteed!

4. Strong duality when ¢ is Isc convex
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Introducing generalized convexity

[Balder, 1977]

Fenchel conjugate c-conjugate
f*(v) = sup (u, v) — f(u) | g°(v)=sup c(u,v)+ (—g(u))

ueRm uel

Fenchel biconjugate c-biconjugate

' (u) = sup (u, v) — F*(v) | g (u) = sup c(u,v) + (—g(v))

veRM veV

Isc convex functions c-convex functions

— = L= g =g«
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Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

p:R" >R
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Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

:R™ 3R
2. We pair a primal space R™ and a dual space V

c:R"x V>R
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Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem
p:R™ =R
2. We pair a primal space R™ and a dual space V
c:R"xV =R
3. We biconjugate the perturbation function ¢

¢ (b) < ¢(b), VbeR™

Weak duality is guaranteed!
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Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem
p:R™ 3R
2. We pair a primal space R™ and a dual space V
c:R"xV >R
3. We biconjugate the perturbation function ¢

¢ (b) < (b)), VbeR™

Weak duality is guaranteed!

4. Strong duality when ¢ is c-convex
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Outline

Perturbation-duality scheme applied to PILP
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Outline

Perturbation-duality scheme applied to PILP
Jeroslow’s result
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Strong duality in LP

>
Dual problem "Primal" problem
sup (p, bo) — inf (x, k)
p X
pTA< k Vd i Ax = bg
pcQm strong duality , ¢ Q"

» Complementary slackness

Xi(ki—p"A;) =0, Vje=1,...,n
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Strong duality in LP
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Dual problem "Primal" problem
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Weak duality in PILP

>
Dual problem "Primal" problem
sup {p, bo) < inf (x, k)
p — X
pTA < k Va ) Ax = by
peQn weak duality  xezn

» Complementary slackness

777
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Subadditive dual problem of Jeroslow

P [Jeroslow, 1979]

dual problem "primal" problem
sup F(bog) — inf (x, k)
F X
FA) <k = Ax=by
F(0) <0 strong duality ¢ 7

F is subadditive
» Complementary slackness

xj(kj—F(aj))zo, Vi=1,...,n

> F(A)x = F(bo)

Jj=1
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Link between Jeroslow’s result and perturbation-duality scheme?

37 /128



Which scheme for PILP duality?

» We define a perturbation function G : Q™ — R

VbeQm, G(b)= inf (x, k)
Ax =b
x €L

» We define a coupling between primal and dual space
c:Q"x?7? >R
» We biconjugate the perturbation function

G'(b) < G(b), Vbe Q™

weak duality
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Outline

Perturbation-duality scheme applied to PILP

Chvatal functions
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Definition of Chvatal functions

The class of Chvatal functions C™
is the smallest class of functions D C {f|f : Q™ — Q} such that

beQ"—Abe D, Vbe Q" (linear functions)

aFi +p8Fe D, VR, FbeD, a,8€ Q4
(conic combination)

[Fle D, VFeD (round-up)

Examples in 1D
> b 3b
> b [b]
> b 3b+ 15[b]
B b»—>15b+3g[%b+%[bﬂ+[16b1
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Jeroslow’s dual problem with Chvatal functions

Chvatal function class: C™

[Jeroslow, 1979] [Blair and Jeroslow, 1982]
sup F(bo) sup F(bo)
F F
F(Aj) < ki = FA) <k
F(0) <0 F(0) <0
Fest sous-add. FecCm

strong duality with initial PILP is achieved for both!
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Outline

Perturbation-duality scheme applied to PILP

Perturbation-duality scheme with Chvatal coupling
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Chvatal perturbation-duality scheme
» We define a perturbation function
Vbe Qm, G(b)= inf  (x, k)

Ax = b
x €L

» We define a coupling between primal and dual space

cc:Q"xC" =R
ce(b,F)=F(b), Vbe Q™ , VFe(C"

» We biconjugate the perturbation functions

G’ (b) < G(b), Vbe QM

weak duality

> We get strong duality G’ (hy) = G(by)
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Obtained dual problems

Formulation 1:

GCCCC/(bO) = SUPfFeem {F(b()) + blen(é’"{G(b) - F(b)}}
Formulation 2:

G o e [P -t (04— 81
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Obtained dual problems

Formulation 1:

G’ (by) = suppcem {F(bo) + bieanf"{G(b) - F(b)}}
Formulation 2:

G’ (bo) = suppecn { F(bo) + infez {(x, k) — F(AX)}}

Reminder Jeroslow’s dual problem

sup F(bo)
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Generalized subdifferential and complementary slackness

» G: bounded perturbation function of a MILP
> A = (AJ)J:].,,IT
» by € Q" anchor

If X € {x € Z|Ax = b} and F € C™ are "primal"-dual optimal
solutions then we have the equivalence

€ QmM*" constraint matrix

F € 0% G(by)
= —ke€d(-FoA+dz)R)

Furthermore, if l/-_\(AJ-) < k;j,Vj =1,...,n, then the following asser-
tion is also equivalent

>

F(0) <0, F(bo) = G(bo) and (kj — F(A}))& =0, Vj=1,....,n.

45 /128
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Epigraph of a perturbation function for a PILP

G(b) = max{3b+ [b],2b+ —3[b],—3b+ [2b] + [Sb]|}

Qe
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Epigraph of a perturbation function for a PILP
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Epigraph of a perturbation function for a PILP
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Epigraph of a perturbation function for a PILP

G(b) = max{3b+ [b],2b+ —3[b],—3b+ [2b] + [Sb]|}

Qe
49 /128



Outline

Perturbation-duality scheme applied to PILP

Branching out
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Limitations of Chvatal functions

» Solve the dual problem of Jeroslow: which algorithm?
([Klabjan, 2007] )

» Expression of a Chvatal function F € C™: no limit on the
number of [-]
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Proposed relaxation: quasiaffine program

» Relaxation : considering a subclass of Chvatal functions

Example
a€Qp
SUp)cqQm <)\; b0> + CVH)\, boﬂ
(A A +al(h AT <k, (1)
Vjie{l,...,n}

» This program is quasiaffine! [Martinez-Legaz, 2005]
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SECOND PART
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Outline

Cutting plane methods for sparse optimization
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ly pseudonorm and sparse optimization

The pseudonorm £y : RY — {0,...,d}

‘Ko(x) = #F#nonnull components of x‘ , Vx e R?

1 0 0
0 =2,4(0]=14]|0] =0.

—50 3 0

» Application in compressive sensing, image recovery, minimum
description length

» Examples: /g
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E-Capra conjugacy and E-Capra convex sets
The norm £ : RY — Ry fr(x) = Z;jzl x?

Normalization mapping n: R — R?

d _ [ x/b(x), ifx#0
Vx € RY, n(x)—{ 0. 0

Coupling Euclidean Constant Along PRimal RAy (E-CAPRA) ¢ :
RY x RY = R

¢(x,y) = (n(x), y), ¥x,y €eRY

[Chancelier and De Lara, 2022]
Proposition

The pseudonorm /g is E-Capra convex, meaning fg = €g¢

Qe
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Three considered problems

Problems Min of Min of {9 Matrix spark
norms ratio
Objective fun. 0y /02 Lo Lo
E-Capra convex v v v

Feasible set

{XERd\{O}:szo}

E-Capra convex

cone(gy, - - - &) \ {0}
v

cone(gy, - - &) \ {0}
7
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Examples and counterexamples of E-Capra convex sets

Exam

ples

—— unit circle
— first axis

—unit circle
— first axis

— unit circle
— first axis

DA
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Cutting plane method in action

DA
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Cutting plane method in action

DA
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Cutting plane method in action

Qe
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Cutting plane method in action

Qe
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(o graph on the sphere in R3

£0 surface

= — 1 o
Longitude
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2.00

150

125

63 /128



E-Capra cuts

1 Cuts heatmap

Latitude

3 —2 -1 o 1 2 3
Longitude
1 Cuts Surface
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—200
-200 =250
-300 =300
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E-Capra cuts

2 Cuts heatmap

3 cone gen
one perim
2 L
[}
i=]
=
=
£
3
1L
¢ n n L n
-3 -2 -1 0
Longitude

2 Cuts Surface
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E-Capra cuts

3 Cuts heatmap

3 cone gen
one perim

Lattuae

-3 -2 -1 0
Longitude
3 Cuts Surface

Latitude

Longitude

-20
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E-Capra cuts

20 Cuts heatmap

3 cone gen
one perim

Latituae

Longitude
20 Cuts Surface

=

-05
Latitude

Longitude
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E-Capra cuts

20 Cuts heatmap

Latituae

3 -2 -1 0 1 2 3
Longitude
20 Cuts Surface

=

-0.5

Latitude

Longitude
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E-Capra cuts

100 Cuts heatmap 10 surface

100 Cuts Surface
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Solving time for the ratio of norms

8=10% mn/2
120 ¢ 0=30% /2
8=50% mn/2

100 ¢

80 r

60 |

Solving time (s)
&
@

40 ¢

(g
<]

20 n ;s
0]
Ol = * °
3610 20 30 40 50 60 70 80 90 100
Dimension
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Relative gap for £y minimization

best found value—optimal value

Relative gap = dimension
0.7 9=10% /2 |
0=30% m/2
0.6 8=50% /2
3
o 05
(o]
c
2 04 I
(]
o =
o 0.3
=
=
[0
S 0.2
x @
0.1
com & & « @
Dimension
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Solving time comparison between Brute Force and cutting
plane

.
‘;BF

_ 10t + CP .
u
3 .
o 10|
g ® . o] @
S 1 e e *
E 10 "[e @ pe
&
= *
2107 .
>
8 -

10—3_

*

6 8 10 12 14 16 18 20 22

Nimancinn 72 /128



Outline

Conclusion
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Generalized convexity for PILP

» Clarification on the notion of dual problems
» A new dual problem for PILP
» Sensitivity analysis in PILP [Wolsey, 1981]
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Abstract convex methods for generalized convexity

» Cutting plane method +» Gomory cutting plane method

» Other ;: Branch-and-Bound, Tabu search, variants with local
search [Rubinov, 2000]
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Spatial branch-and-bound

'

unit circle

= = oFE-Capra cone
@ relaxed sol

o7s | | % normalized sol

= Separation
7 New relaxed sets

025

Qe
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Thank you for your attention!
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Outline

Annexes
Background on generalized convexity
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Moreau lower and upper additions

R=RU{—00} U {400} = [—00, +00]
Moreau lower and upper additions extend the usual addition with

(+50) + (=00) = (~00) + (+0) = ~o¢
(+00) F (~00) = (=0) + (+00) =+
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Coupling
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Background on couplings and Fenchel-Moreau conjugacies

Two vector spaces X and Y, paired by a bilinear form ( ,)
give rise to the classic Fenchel conjugacy

FeER » fFeR”

() =sup (b ) + (~F(x))) , Wy €Y

> Let be given two sets X (“primal”) and Y (“dual”)
not necessarily paired vector spaces (nodes and arcs, etc.)

» We consider a coupling function
c:XxY—=R

We also use the notation X < Y for a coupling
[Martinez-Legaz, 2005]
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Conjugacy
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Fenchel-Moreau conjugate and biconjugate

FER = eR"
The c-Fenchel-Moreau conjugate of a function f : X — R, with

respect to the coupling ¢, is the function ¢ : Y — R defined by
F<(y) = sup

xeX

(cer) + (=), vyeY

The c-Fenchel-Moreau biconjugate £ : X — R is given by

£ (x) = (F9)° (x) = sup (c(x,y) + (—fc(y))) , WxeX
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Fenchel-Moreau biconjugate
With the coupling ¢, we associate the reverse coupling ¢’

:YxX—=R, d(y,x)=clx,y), Y(y,x) €Y xX

» The c’-Fenchel-Moreau conjugate of a function g: VY — R,
with respect to the coupling ¢/, is the function g : X —» R

g (x) = sup (C(X,Y) + (—g(y))) . VxeX
yey

» The c-Fenchel-Moreau biconjugate <" : X — R
of a function f : X — R is given by

£ (x) = (F9)° (x) = sup (cxy) + (F(v)) , WxeX
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So-called c-convex functions have dual representations
For any function f : X — R, one has that

f< < f

Definition

The function f : X — R is c-convex if f<<' = f

If the function f : X — R is c-convex, we have

f(x) = sup (c(x,y) + (—fc(y))> , VxeX
yeyY

~~

elementary function of x

Example: x-convex functions
= closed convex functions [Rockafellar, 1974, p. 15]
= proper convex Isc or = —o0o or = 400

= suprema of affine functions
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Subdifferential
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Subdifferential(s) 0°f, 0.f,05f : X = Y of a conjugacy

For any function f : X — R and x € X, y ey,

Upper subdifferential (following Martinez-Legaz and Singer [1995])
y €0°f(x) = f(x) =clx.y) + (=f(y))

Middle subdifferential (“a la Fenchel-Young")
y €9:f(x) <= f(x)+(y) = c(x,y)

Lower subdifferential (“a la Rockafellar-Moreau")
y €0cf(x) = f(y) = c(x,y) + (-F(x))
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Properties of subdifferentials

» The upper subdifferential 9°f has the property that
OF(x)#£ D= F<(x) = f(x)
————

the function f is c-convex at x

» The lower subdifferential O.f is characterized by

y € 0cf(x) <= x € argl;nxax [C(X’,y) + (—f(x’))}

— c(x,y) + (ff(xl))
<c(x,y) + (—f(x)) , WX eX

» All definitions coincide when
—00 < € < 400 and —oo < f(x) < 400
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Application to duality in optimization
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Dual problems: perturbation scheme [Rockafellar, 1974]

» Set W, function h: W — R
and original minimization problem

inf h
Jinf, h(w)

» Embedding/perturbation scheme given by
a nonempty set X (perturbations), an element X € X (anchor)
and a function (Rockafellian) R : W x X — R such that

h(w) = R(w,X)
» Perturbation function

#(x) = inf R(w,x)

» Original minimization problem

¢(x) = inf R(w,x) = inf h(w)
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Dual problems: conjugacy, weak and strong duality

» Coupling X &Y, and Lagrangian £L: W x Y — R given by
L(w,y) = inf {R(w,x) + (=c(x.)) }
» Dual function
== — c pr— | f
U(y) = —¢(y) ngwﬁ(w,y)
» Dual maximization problem (weak duality)

6 (%) = sup {c(%,y) + ¥(y)} < inf h(w) = ¢(X)

» Strong duality holds true when ¢ is c-convex at X, that is,

(bccl( )—sup{ c(x,y) +1/) }— |nf h(w) = ¢(x)
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Dual problems: perturbation scheme [Rockafellar, 1974]

sets optimization primal coupling dual

set W set X X&EY set Y
variables decision perturbation c(x,y) sensitivity

weW x€X cR yeyY
bivariate Rockafellian Lagrangian
functions R:WxX—-R L:WxY—-R
definition L(w,y) =

infyex {R(W, x)+ (7C(x,y))}

property —L(w,) = (R(w,"))*
property —L(w, ) is ¢’-convex
univariate perturbation function dual function
functions ¢:X =R P:Y =R
definition d(x) = infyew R(w, x) P(y) = infuew L(w,y)
property —) = ¢

Anchor X € X and dual maximization problem (weak duality)
¢ (X) = supyey {c(X,¥) + ¥(¥)} < infuwew h(w) = ¢(X)
Strong duality iff ¢ is c-convex at X iff ¢ (X) = ¢(X)
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Cutting plane method in abstract convexity
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Abstract cutting plane method

[Rubinov, 2000, §9.2.3]
Let W be a set, H C RW be a set of elementary functions, and
f: W — R be a H-convex function

1. Set k := 0. Choose an arbitrary initial point wyg € W

2. Calculate an abstract subgradient hy € OHf(Wk)
Let ;1 = —oc0 and

fi = fi1, h
« = max{fx_1, he }

new cut

3. Calculate an optimal solution w & argmin,, v fi(w)
4. Set k = k+1, we=w
Repeat from Step 2 until a stop condition is satisfied
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Abstract cutting plane method: convergence result

[Pallaschke and Rolewicz, 1997, Theorem 9.1.1]
Theorem
Let

> (W, d) be a metric space

» H be a family of real-valued locally uniform continuous
functions h: W — R,

» f:W — R be a continuous H-convex function

Then, all accumulation points of the sequence {wj},
generated by the abstract cutting plane method
are minimizers of the function f
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Numerical application to three capra-convex problems
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E-Capra conjugacy

The £, : RY — R, norm is defined by £5(x) = /3%, x?

Let n: RY — RY be the normalization mapping given by
d [ x/la(x), ifx#0
Vx eR ,n(x)—{ 0. =0

We define the Euclidean Constant Along PRimal RAy (E-CAPRA)
coupling ¢ : R x RY = R by

¢(x,y) = (n(x), y), Vx,y €R?
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Definition and characterization of E-Capra convex sets

We say that the set D C RY is E-Capra convex if 1p = Lg¢

meaning
the indicator function ¢p is a E-Capra convex function

[Le Franc, 2021, Proposition 6.2.6]
Proposition

Let D C RY be a nonempty set

D is a cone,
D is E-Capra convex < D U {0} is closed,

D n {0} =co(n(D)) N {0}
where G0 is the closed convex hull

o 5 = = = VAl
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The £y pseudonorm is aet a rerm

Let d € N*

d
fo(X) = Z 1{Xi7'50} , Vx € R
i=1

» The pseudonorm /gy : RY — [0,d] = {0,1,...,d}
satisfies 3 out of 4 axioms of a norm
> we have {y(x) >0 v
>wehave(€o(x):0<:>x:0 v

> we have (p(x + x) < Lo(x) + Lo(X') v
» But... 0-homogeneity holds true

lo(px) = Lo(x) , Vp#0
> We denote the level sets of the £y pseudonorm by

55 = {x e R |fo(x) < k} , VK€ [0,0]
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E- Capra subdifferential of pseudonorm /g
[Chancelier and De Lara, 2022]

_ g

The pseudonorm /g is E-Capra convex, meaning ¢
[Le Franc, Chancelier, and De Lara, 2022]
Proposition

Let x € RY\ {0} and supp(x) = {i e{1,...,d}|x # 0}

For y € RY, let the permutation v : {1,...,d} — {1,...,d}besuch
that |y, 1)l > -+ > |yy(m)|

INERL, yi= Ax, Vi€ supp(x),
|y12| < minfetsupp(x)g/i' ) V_/ % sgpp(X) y
vwrnl® = (yllez +1)° = (ylle2)®
y € 9clo(x) = Vk €10,...,4(x) -1},
Vuttorarnl® < (I llapg.2 + 1% = (I llpg.2)?
Vk €{0,...,0(x)—1}.

= o = = DA
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E-Capra subdifferential ratio ¢1/¢>
We define Z‘ 1(0)=0

Then, the function g—; is E-Capra convex, meaning Z_l = (€—1)¢¢

Proposition

For any x € RY, we have that
4 .
Y €0:(;)(x) = v =sign(x)

where the sign function sign : RY — {—1,0,1}9 is defined by

-1, ifx; <0
¥x e R sign(x) =< 0, ifx=0
1, if x; >0

o 5 - = o
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Three problems with E-Capra convex objective function

» Cone is the closed convex conical hull

Problems Min of the ratio Min of ¢g Spark of a matrix
H ‘ of two norms
Objective function 01/02 Lo Lo
Objective E-Capra convex v v v
Feasible set cone(gy,-.-g) \ {0} cone(gy,---g) \ {0} {x € R\ {0} : Ax = 0}
Feasible set E-Capra convex v v

» The cone generators {g1,...g,} C R? are such that

0 ¢ o (n(come(en, &)\ {0}))
So coné(gy,...gr) \ {0} is a E-Capra convex set

> Theset {x € RY\ {0} : Ax =0} is
not E-Capra convex when the matrix A is singular
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Three problems with E-Capra convex objective function

Problems Min of the ratio Min of g Spark of a matrix
H ‘ of two norms ‘ ‘
Objective function 0y /0> Lo Lo
Objective E-Capra convex v v v
Feasible set cone(gy, - --g) \ {0} cone(gy, - --g) \ {0} {X € RY \ {0} : Ax = 0}
Feasible set E-Capra convex v

» Minimization of /1 /¢5:

toy example which satisfies the convergence

aSSumptionS[PaIIaschke and Rolewicz, 1997, Theorem 9.1.1]

» Minimization of the pseudonorm ¢y on a cone without 0:
more realistic, does not satisfy the convergence assumptions

(4o not continuous)

» Computation of the spark of a matrix:

‘semi’ E-Capra convex

useful in compress sensing [Tillmann and Pfetsch, 2014]

problem
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Reformulation as a minimization program on the sphere

Proposition

Let f: R 5 R be a E-Capra convex function,
and let K C RY be a E-Capra convex set

Then, the problem

inf f
xe;?\{o} (x)
has the same value than
k™
62(X) =1

and their solutions are the same up to normalization by the norm /;
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E-Capra cutting plane method

Definition

Let K = cone(g,...,g) C R"” be an E-Capra convex cone
Let f : R” — R be an E-Capra convex function
We call the following algorithm the E-Capra cutting plane method

1. Set k := 0. Find xg € K such that ¢(x) =1

2. Calculate an E-Capra subgradient y* € 8%f(x¥)
Let f1 = —o0 and

fi = max{fi_1, (-, yi) — FCi) ¢ v5) — FE( )}

4

new cut

3. Calculate an optimal solution X € arg minfi(x)
xeK
lr(x)=1

4. Set k = k+1, x, =X
Repeat from Step 2 until a stop condition is satisfied
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Difficulties with the E-Capra cutting plane method

» The norms of subgradients explode

fg(yk) — 00
k—o0

— Solution: project x* on the i-th axis when |x/| ~ 0 before
computing yk € 9¢f(x)

» The sphere constraint ¢3(x) = 1 is not a convex constraint
— Solution: use a nonlinear solver (here IpOpt) and add the
constraint £1(x) < 7 to the

minimal known value of 4y at step k
subproblem
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E-Capra cutting plane method with local search

We call the following algorithm the E-Capra cutting plane method
with local search for the pseudonorm £

1.

Set a threshold € > 0 Set k := 0 Set the upper bound Zf, =n

Find xo € K such that f2(xp) =1
Foreach i€ {1,...,n}, if [x| <&, set x :=0

. Calculate an E-Capra subgradient y* € 8¢f(xk)

Let f_y = —o0 and fi = max{fi—1, (-, yi) — F€(yi)}
Calculate an optimal solution X € argmin  fi(x)
xeK

f(x)=1, b(x)<ls

. (Local search) Set x**! :=X.

Set the 1 +Z§ smallest components of X to 0.
If R € K\ {0}, set 75" =75 — 1 and x**! := %,
—k

. —k+1
Otherwise, set €0+ =l

Set k := k + 1 Repeat from Step 2 until a stop condition is satisfied
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Minimization of the ratio of two norms
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Instances: visualization in the 2D case

15 15

—— unit circle — unit circle

— first axis — first axis
cone with cone with
s 0 = 10% /2 0s 0 = 25% /2

— unit circle — unit circle
10 10
— first axis — first axis
cone with cone with
s 0 = 50% /2 os 0 = 75% /2

Qe
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Solving time for the ratio of two norms

8=10% mn/2
120 ¢ 0=30% /2
8=50% mn/2

100 ¢
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Zoom on the low dimensions

=]
8=10% 1/2
0=30% 12
020} 8=50% 1/2
—_ =]
L
@ L
g o1s
)
(@)
o
£ .
5 010
wn
0.05 | " . * *
®
: & &8 8 ° 0 T
3 4 5 6 7 8 9 10

Dimension

113 /128



Conclusion for the ratio of two norms

» The toy example converges (no surprise, convergence theorem
assumptions are satisfied)

» Tighter cones lead to faster convergence

» Experimental observation: when the method finds the optimal

solution it sticks to it for the following iterations

» Future tests: inf, o Hlﬁ(—ﬂ'
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Minimization of the pseudonorm £y over a finitely generated cone
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Instances

Same instances as the minimization of the ratio of two norms

15 15

— unit circle — unit circle

— first axis

cone with
0 =25% /2

— first axis

cone with
0 =10%mn/2

— unit circle — unit circle

— first axis — first axis
cone with cone with
0 = 50% /2 os 0 = 75% /2

Qe
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Solving time for pseudonorm £

best value found—optimal value

Relative gap = dimension
0.7 9=10% /2 |
0=30% m/2
0.6 8=50% /2
3
o 05
(o]
c
2 04 I
(]
o =
o 0.3
=
=
[0
S 0.2
x @
0.1
com & & « @
Dimension
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Conclusion for the minimization of pseudonorm £ in a cone

» E-Capra cutting plane method does not converge for £

» E-Capra cutting plane method with local search does not
converge for £y beyond dimension 4

> Maybe the noncontinuity of £ is in cause
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Computation spark of matrix
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Definition of the spark of a matrix

Definition

Let A€ R™9 be a real matrix
Then, we call spark(A) €= 1,d,...,U{+oo} the spark of A which
is given by

spark(A) = min {{y(x)|Ax =0, x #0}

Proposition

Let A € R™*9 be a real matrix

Then, spark(A) is the smallest number of dependent columns of the
matrix A

ST = = D¢
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Examples for the spark of a matrix

1 00

> spark [0 1 0] =1
0 00
-1 1 0

> spark [ 2 -2 0] =2
3 -3 1
1 00

> spark [0 1 0] =400
0 01
101

> spark [0 1 1] =3
111
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Brute force computing of the spark of a matrix

1. Sets:=1
2. For every family {A;,,..., A} of s columns of A
if the family {Aj,,..., A;.} is not free, stop and return s

3. Sets:=s+1
If s < d, repeat from Step
Otherwise, return +oo
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Generation of instances

> Instances:
square matrices A € R9*9 such that spark(A) = d/2

> We have used the following algorithm

1. Randomly choose s — 1 vectors A; € RY.
Randomly choose s — 1 real numbers u; € R.
Compute the vector A; = le;ll WiA;.
Randomly choose n — s vectors A, € RY.
Set the matrix A = (Ay, ..., Ap).
Shuffle the columns of the matrix A.

ocoarwnN
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Solving time comparison between brute force and E-CAPRA
cutting plane for spark

Solving time log scaled (s)
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Solving time for the E-Capra cutting plane method for spark

(s)
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Conclusion for the computing of the spark of a Matrix

» Convergence even though the feasible set {x # 0|Ax =0} is
not E-CAPRA convex

» Converges faster than bruteforce
» No convergence for £y and convergence for spark
maybe because

» cone(gi,...,g ) is a cone
> {x # 0|Ax = 0} is a vector space
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Discussion
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Conclusion of the numerical tests (1)

» Ranking of the problems by difficulty
1. (Toy example) the minimization of the ratio of the ¢; norm
over the /> norm;
2. the computation of the spark of a square matrix;
3. the minimization of the ¢y pseudonorm in a blunt convex cone.
» Computing Spark is not E-Capra convex but converges
Minimization of £y in a blunt cone is E-Capra but does not
converge

» Future tests: see if the minimization of ¢y converges when the
constraints are in 'dual’ form {x|Ax < 0}
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