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First part: Perturbation-duality scheme in combinatorial
optimization

▶ Rewriting of Jeroslow's result

Perturbation-duality scheme
+

generalized conjugacy

▶ Linking

Perturbation-duality scheme
and

"Lagrangian" relaxation

▶ Proposing a quasi-a�ne dual problems for Pure Integer Linear
Programming
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Second part: Cutting plane methods for sparse optimization

▶ Implementation of cutting plane methods using
▶ results on CAPRA-convexity of ℓ0

[Chancelier and De Lara, 2020, 2021]

▶ and the calculation of its CAPRA-subdi�erentials
[Le Franc, 2021]

▶ Numerical tests on instances we generated in low dimension
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A closed convex set
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Usual de�nition of convexity by the interior
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Equivalent de�nition for closed-convexity by the exterior
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Approximation by �nite number of cuts
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Epigraph of a closed-convex function

y = x2
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The epigraph is above its tangents

y = x2
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Approximation by a �nite number of cuts

y = x2
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Example of a nonconvex set
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Some tangents won't stay outside!
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Generalized convexity: we change the shape of the tangents!
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Coming next: generalized convexity of Gomory function

y = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
}
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Application of the scheme to Linear Programming

Initial minimization problem

inf
x

⟨x , k⟩
Ax = b0
x ∈ Qn

+
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Step 1. Perturbation of the initial minimization problem

∀b ∈ Qm , φ(b) = inf
x

⟨x , k⟩
Ax = b
x ∈ Qn

+

▶ Perturbation space: Qm

▶ Perturbation function φ : Qm → R
▶ Value of the initial problem: φ(b0)
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Epigraph of the perturbation function

φ(b) = max{−5b − 5,−3b + 1, 3, b}
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Step 2. Coupling and conjugate function

▶ Perturbation function

∀b ∈ Qm , φ(b) = inf
x

⟨x , k⟩
Ax = b
x ∈ Qn

+

▶ Coupling ⟨·, ·⟩ : Qm ×Qm → R
▶ Conjugate function φ⋆ : Qm → R

∀p ∈ Qm , φ⋆(p) = sup
b∈Qm

{
⟨b, p⟩ − φ(b)

}
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Step 3. Biconjugate and weak duality

▶ Biconjugate function φ⋆⋆′ : Qm → R

∀b ∈ Qm , φ⋆⋆′(b) = sup
p∈Qm

{
⋆(b, p) ·+

(
−φ⋆(p)

)}
▶ Weak duality

φ⋆⋆′(b) ≤ φ(b)
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Step 4. Closed convexity and strong duality

▶ φ is lower-semi-continuous convex

▶ So we have strong duality

φ⋆⋆′(b) = φ(b)
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Summary of the perturbation-duality scheme

[Rockafellar, 1974]

1. We perturb a minimization problem

∀b ∈ Qm , φ(b) = inf
x
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Introducing generalized convexity

[Balder, 1977]

Fenchel conjugate c-conjugate
f ⋆(v) = sup

u∈Rm
⟨u, v⟩ − f (u) g c(v) = sup

u∈U
c(u, v) ·+

(
−g(u)

)
Fenchel biconjugate c-biconjugate

f ⋆⋆
′
(u) = sup

v∈Rm
⟨u, v⟩ − f ⋆(v) g cc ′(u) = sup

v∈V
c(u, v) ·+

(
−g c(v)

)
lsc convex functions c-convex functions

⇐⇒ f = f ⋆⋆
′

: ⇐⇒ g = g cc ′
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Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

φ : Rm → R

31 / 128



Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

φ : Rm → R

2. We pair a primal space Rm and a dual space V

c : Rm × V → R

31 / 128



Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

φ : Rm → R

2. We pair a primal space Rm and a dual space V

c : Rm × V → R

3. We biconjugate the perturbation function φ

φcc ′(b) ≤ φ(b) , ∀b ∈ Rm︸ ︷︷ ︸
Weak duality is guaranteed!

31 / 128



Perturbation-duality scheme with generalized convexity

1. We perturb a minimization problem

φ : Rm → R

2. We pair a primal space Rm and a dual space V

c : Rm × V → R

3. We biconjugate the perturbation function φ

φcc ′(b) ≤ φ(b) , ∀b ∈ Rm︸ ︷︷ ︸
Weak duality is guaranteed!

4. Strong duality when φ is c-convex

31 / 128



Outline

Introduction

Overview of generalized convexity and duality

Perturbation-duality scheme applied to PILP

Cutting plane methods for sparse optimization

Conclusion

Annexes

32 / 128



Outline
Introduction

Overview of generalized convexity and duality
Generalized convexity
Duality by the perturbation-duality scheme of Rockafellar

Perturbation-duality scheme applied to PILP
Jeroslow's result
Chvátal functions
Perturbation-duality scheme with Chvátal coupling
Branching out

Cutting plane methods for sparse optimization

Conclusion

Annexes
Background on generalized convexity
Application to duality in optimization
Cutting plane method in abstract convexity
Numerical application to three capra-convex problems

33 / 128



Strong duality in LP

▶
Dual problem

sup
p

⟨p, b0⟩

pTA ≤ k
p ∈ Qm

=︸︷︷︸
strong duality

"Primal" problem

inf
x

⟨x , k⟩
Ax = b0
x ∈ Qn

+

▶ Complementary slackness

x̂j
(
kj − p̂TAj

)
= 0 , ∀j ∈= 1, . . . , n
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Weak duality in PILP

▶
Dual problem

sup
p

⟨p, b0⟩

pTA ≤ k
p ∈ Qm

≤︸︷︷︸
weak duality

"Primal" problem

inf
x

⟨x , k⟩
Ax = b0
x ∈ Zn

+

▶ Complementary slackness

???
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Subadditive dual problem of Jeroslow

▶ [Jeroslow, 1979]

dual problem

sup
F

F (b0)

F (Aj) ≤ kj
F (0) ≤ 0

F is subadditive

=︸︷︷︸
strong duality

"primal" problem

inf
x

⟨x , k⟩
Ax = b0
x ∈ Zn

+

▶ Complementary slackness

xj
(
kj − F (aj)

)
= 0 , ∀j = 1, . . . , n

n∑
j=1

F (Aj)xj = F (b0)
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Link between Jeroslow's result and perturbation-duality scheme?
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Which scheme for PILP duality?

▶ We de�ne a perturbation function G : Qm → R

∀b ∈ Qm , G (b) = inf
x

⟨x , k⟩
Ax = b
x ∈ Zn

+

▶ We de�ne a coupling between primal and dual space

c : Qm×?? → R

▶ We biconjugate the perturbation function

G cc ′(b) ≤ G (b) , ∀b ∈ Qm︸ ︷︷ ︸
weak duality
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De�nition of Chvátal functions

De�nition

The class of Chvátal functions Cm

is the smallest class of functions D ⊂ {f |f : Qm → Q} such that

b ∈ Qm 7→ λb ∈ D , ∀b ∈ Qm (linear functions)

αF1 + βF2 ∈ D , ∀F1,F2 ∈ D , α, β ∈ Q+

(conic combination)

⌈F ⌉ ∈ D , ∀F ∈ D (round-up)

Examples in 1D

▶ b 7→ 3
4b

▶ b 7→ ⌈b⌉
▶ b 7→ 3

4b + 7
10⌈b⌉

▶ b 7→ 15b + 39
22

⌈
3
4b + 7

10⌈b⌉
⌉
+ ⌈16b⌉

40 / 128



Jeroslow's dual problem with Chvátal functions

Chvátal function class: Cm

[Jeroslow, 1979] [Blair and Jeroslow, 1982]

sup
F

F (b0)

F (Aj) ≤ kj
F (0) ≤ 0

F est sous-add.

=

sup
F

F (b0)

F (Aj) ≤ kj
F (0) ≤ 0
F ∈ Cm

strong duality with initial PILP is achieved for both!
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Chvátal perturbation-duality scheme
▶ We de�ne a perturbation function

∀b ∈ Qm , G (b) = inf
x

⟨x , k⟩
Ax = b
x ∈ Zn

+

▶ We de�ne a coupling between primal and dual space

cC : Qm × Cm → R
cC(b,F ) = F (b) , ∀b ∈ Qm , ∀F ∈ Cm

▶ We biconjugate the perturbation functions

G cCcC
′
(b) ≤ G (b) , ∀b ∈ Qm︸ ︷︷ ︸

weak duality

▶ We get strong duality G cCcC
′
(b0) = G (b0)
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Obtained dual problems

Formulation 1:

G cCcC
′
(b0) = supF∈Cm

{
F (b0) + inf

b∈Qm

{
G (b)− F (b)

}}
Formulation 2:

G cCcC
′
(b0) = supF∈Cm

{
F (b0) + infx∈Zn

+

{
⟨x , k⟩ − F (Ax)

}}
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Formulation 2:

G cCcC
′
(b0) = supF∈Cm

{
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+
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sup
F

F (b0)

F (Aj) ≤ kj
F (0) ≤ 0
F ∈ Cm
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Generalized subdi�erential and complementary slackness
Proposition

▶ G : bounded perturbation function of a MILP

▶ A =
(
Aj

)
j=1,...,n

∈ Qm×n constraint matrix

▶ b0 ∈ Qn anchor

If x̂ ∈ {x ∈ Zn
+|Ax = b0} and F̂ ∈ Cm are "primal"-dual optimal

solutions then we have the equivalence

F̂ ∈ ∂cCG (b0)

⇐⇒ −k ∈ ∂
(
−F̂ ◦ A∔ δZn

+

)
(x̂)

Furthermore, if F̂ (Aj) ≤ kj , ∀j = 1, . . . , n, then the following asser-
tion is also equivalent

F̂ (0) ≤ 0 , F̂ (b0) = G (b0) and
(
kj − F̂ (Aj)

)
x̂j = 0 , ∀j = 1, . . . , n .
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Epigraph of a perturbation function for a PILP

G (b) = max{3b + ⌈b⌉, 2b +−3⌈b⌉,−3b + ⌈2b⌉+
⌈

3
10b

⌉
}
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Limitations of Chvátal functions

▶ Solve the dual problem of Jeroslow: which algorithm?
([Klabjan, 2007] )

▶ Expression of a Chvátal function F ∈ Cm: no limit on the
number of ⌈·⌉

51 / 128



Proposed relaxation: quasia�ne program

▶ Relaxation : considering a subclass of Chvátal functions

Example

α ∈ Q+

supλ∈Qm ⟨λ, b0⟩+ α⌈⟨λ, b0⟩⌉
⟨λ, Aj⟩+ α⌈⟨λ, Aj⟩⌉ ≤ kj ,

∀j ∈ {1, . . . , n}
(1)

▶ This program is quasia�ne! [Martínez-Legaz, 2005]
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SECOND PART
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ℓ0 pseudonorm and sparse optimization

De�nition

The pseudonorm ℓ0 : Rd → {0, . . . , d}

ℓ0(x) = #nonnull components of x , ∀x ∈ Rd

▶ Examples: ℓ0

 1
0

−50

 = 2, ℓ0

0
0
3

 = 1, ℓ0

0
0
0

 = 0.

▶ Application in compressive sensing, image recovery, minimum
description length
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E-Capra conjugacy and E-Capra convex sets

The norm ℓ2 : Rd → R+ ℓ2(x) =
√∑d

i=1 x
2
i

De�nition

Normalization mapping n : Rd → Rd

∀x ∈ Rd , n(x) =

{
x/ℓ2(x), if x ̸= 0

0, if x = 0

Coupling Euclidean Constant Along PRimal RAy (E-CAPRA) ¢ :
Rd × Rd → R

¢(x , y) = ⟨n(x), y⟩ , ∀x , y ∈ Rd

[Chancelier and De Lara, 2022]

Proposition

The pseudonorm ℓ0 is E-Capra convex, meaning ℓ0 = ℓ
¢¢′

0
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Three considered problems

Problems Min of Min of ℓ0 Matrix spark
norms ratio

Objective fun. ℓ1/ℓ2 ℓ0 ℓ0
E-Capra convex ✓ ✓ ✓

Feasible set cone(g1, . . . gr ) \ {0} cone(g1, . . . gr ) \ {0}
{
x ∈ Rd \ {0} : Ax = 0

}
E-Capra convex ✓ ✓
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Examples and counterexamples of E-Capra convex sets
Examples

Counterexamples
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Cutting plane method in action
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Cutting plane method in action

60 / 128



Cutting plane method in action
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Cutting plane method in action
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ℓ0 graph on the sphere in R3
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E-Capra cuts
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E-Capra cuts
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E-Capra cuts
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E-Capra cuts

67 / 128



E-Capra cuts
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E-Capra cuts
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Solving time for the ratio of norms
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Relative gap for ℓ0 minimization

Relative gap = best found value−optimal value
dimension
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Solving time comparison between Brute Force and cutting
plane
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Generalized convexity for PILP

▶ Clari�cation on the notion of dual problems

▶ A new dual problem for PILP

▶ Sensitivity analysis in PILP [Wolsey, 1981]
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Abstract convex methods for generalized convexity

▶ Cutting plane method ↔ Gomory cutting plane method

▶ Other : Branch-and-Bound, Tabu search, variants with local
search [Rubinov, 2000]
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Spatial branch-and-bound
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Thank you for your attention!
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Moreau lower and upper additions

R = R ∪ {−∞} ∪ {+∞} = [−∞,+∞]

Moreau lower and upper additions extend the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞
(+∞)∔ (−∞) = (−∞)∔ (+∞) = +∞
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Coupling
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Background on couplings and Fenchel-Moreau conjugacies
De�nition

Two vector spaces X and Y, paired by a bilinear form ⟨ , ⟩
give rise to the classic Fenchel conjugacy

f ∈ RX 7→ f ⋆ ∈ RY

f ⋆(y) = sup
x∈X

(
⟨x , y⟩+

(
−f (x)

))
, ∀y ∈ Y

▶ Let be given two sets X (�primal�) and Y (�dual�)
not necessarily paired vector spaces (nodes and arcs, etc.)

▶ We consider a coupling function

c : X× Y → R

We also use the notation X c↔ Y for a coupling

[Martínez-Legaz, 2005]
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Conjugacy
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Fenchel-Moreau conjugate and biconjugate

f ∈ RX 7→ f c ∈ RY

De�nition

The c-Fenchel-Moreau conjugate of a function f : X → R, with
respect to the coupling c , is the function f c : Y → R de�ned by

f c(y) = sup
x∈X

(
c(x , y) ·+

(
−f (x)

))
, ∀y ∈ Y

The c-Fenchel-Moreau biconjugate f cc
′
: X → R is given by

f cc
′
(x) =

(
f c
)c ′

(x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))
, ∀x ∈ X
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Fenchel-Moreau biconjugate

With the coupling c , we associate the reverse coupling c ′

c ′ : Y× X → R , c ′(y , x) = c(x , y) , ∀(y , x) ∈ Y× X

▶ The c ′-Fenchel-Moreau conjugate of a function g : Y → R,
with respect to the coupling c ′, is the function g c ′ : X → R

g c ′(x) = sup
y∈Y

(
c(x , y) ·+

(
−g(y)

))
, ∀x ∈ X

▶ The c-Fenchel-Moreau biconjugate f cc
′
: X → R

of a function f : X → R is given by

f cc
′
(x) =

(
f c
)c ′

(x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))
, ∀x ∈ X
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So-called c-convex functions have dual representations
For any function f : X → R, one has that

f cc
′ ≤ f

De�nition

The function f : X → R is c-convex if f cc
′
= f

If the function f : X → R is c-convex, we have

f (x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))︸ ︷︷ ︸
elementary function of x

, ∀x ∈ X

Example: ⋆-convex functions
= closed convex functions [Rockafellar, 1974, p. 15]
= proper convex lsc or ≡ −∞ or ≡ +∞
= suprema of a�ne functions
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Subdi�erential

88 / 128



Subdi�erential(s) ∂c f , ∂c f , ∂
c
c f : X ⇒ Y of a conjugacy

For any function f : X → R and x ∈ X, y ∈ Y,
De�nition

Upper subdi�erential (following Martinez-Legaz and Singer [1995])

y ∈ ∂c f (x) ⇐⇒ f (x) = c(x , y) ·+
(
−f c(y)

)
Middle subdi�erential (�à la Fenchel-Young�)

y ∈ ∂cc f (x) ⇐⇒ f (x)∔ f c(y) = c(x , y)

Lower subdi�erential (�à la Rockafellar-Moreau�)

y ∈ ∂c f (x) ⇐⇒ f c(y) = c(x , y) ·+
(
−f (x)

)
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Properties of subdi�erentials

▶ The upper subdi�erential ∂c f has the property that

∂c f (x) ̸= ∅ ⇒ f cc
′
(x) = f (x)︸ ︷︷ ︸

the function f is c-convex at x

▶ The lower subdi�erential ∂c f is characterized by

y ∈ ∂c f (x) ⇐⇒ x ∈ argmax
x ′∈X

[
c(x ′, y) ·+

(
−f (x ′)

)]
⇐⇒ c(x ′, y) ·+

(
−f (x ′)

)
≤ c(x , y) ·+

(
−f (x)

)
, ∀x ′ ∈ X

▶ All de�nitions coincide when
−∞ < c < +∞ and −∞ < f (x) < +∞
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Dual problems: perturbation scheme [Rockafellar, 1974]
▶ Set W, function h : W → R

and original minimization problem

inf
w∈W

h(w)

▶ Embedding/perturbation scheme given by
a nonempty set X (perturbations), an element x ∈ X (anchor)
and a function (Rockafellian) R : W× X → R such that

h(w) = R(w , x)

▶ Perturbation function

ϕ(x) = inf
w∈W

R(w , x)

▶ Original minimization problem

ϕ(x) = inf
w∈W

R(w , x) = inf
w∈W

h(w)
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Dual problems: conjugacy, weak and strong duality

▶ Coupling X c↔ Y, and Lagrangian L : W× Y → R given by

L(w , y) = inf
x∈X

{
R(w , x)∔

(
−c(x , y)

)}
▶ Dual function

ψ(y) = −ϕc(y) = inf
w∈W

L(w , y)

▶ Dual maximization problem (weak duality)

ϕcc
′
(x) = sup

y∈Y

{
c(x , y) ·+ ψ(y)

}
≤ inf

w∈W
h(w) = ϕ(x)

▶ Strong duality holds true when ϕ is c-convex at x , that is,

ϕcc
′
(x) = sup

y∈Y

{
c(x , y) ·+ ψ(y)

}
= inf

w∈W
h(w) = ϕ(x)
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Dual problems: perturbation scheme [Rockafellar, 1974]

sets optimization primal coupling dual

set W set X X c↔ Y set Y
variables decision perturbation c(x , y) sensitivity

w ∈ W x ∈ X ∈ R y ∈ Y
bivariate Rockafellian Lagrangian

functions R : W× X → R L : W× Y → R
de�nition L(w , y) =

infx∈X

{
R(w , x)∔

(
−c(x , y)

)}
property −L(w , ·) =

(
R(w , ·)

)c
property −L(w , ·) is c ′-convex
univariate perturbation function dual function

functions ϕ : X → R ψ : Y → R
de�nition ϕ(x) = infw∈WR(w , x) ψ(y) = infw∈W L(w , y)
property −ψ = ϕc

Anchor x ∈ X and dual maximization problem (weak duality)
ϕcc

′
(x) = supy∈Y

{
c(x , y) ·+ ψ(y)

}
≤ infw∈W h(w) = ϕ(x)

Strong duality i� ϕ is c-convex at x i� ϕcc
′
(x) = ϕ(x)
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Abstract cutting plane method

[Rubinov, 2000, �9.2.3]

De�nition

Let W be a set, H ⊂ RW
be a set of elementary functions, and

f : W → R be a H-convex function

1. Set k := 0. Choose an arbitrary initial point w0 ∈ W
2. Calculate an abstract subgradient hk ∈ ∂H f (wk)

Let f−1 = −∞ and

fk = max{fk−1, hk︸︷︷︸
new cut

}

3. Calculate an optimal solution ŵ ∈ argminw∈W fk(w)

4. Set k := k + 1, wk = ŵ
Repeat from Step 2 until a stop condition is satis�ed
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Abstract cutting plane method: convergence result

[Pallaschke and Rolewicz, 1997, Theorem 9.1.1]

Theorem

Let

▶ (W, d) be a metric space

▶ H be a family of real-valued locally uniform continuous
functions h : W → R,

▶ f : W → R be a continuous H-convex function

Then, all accumulation points of the sequence {wk}k∈N
generated by the abstract cutting plane method
are minimizers of the function f
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E-Capra conjugacy

The ℓ2 : Rd → R+ norm is de�ned by ℓ2(x) =
√∑d

i=1 x
2
i

De�nition

Let n : Rd → Rd be the normalization mapping given by

∀x ∈ Rd , n(x) =

{
x/ℓ2(x), if x ̸= 0

0, if x = 0

We de�ne the Euclidean Constant Along PRimal RAy (E-CAPRA)
coupling ¢ : Rd × Rd → R by

¢(x , y) = ⟨n(x), y⟩ , ∀x , y ∈ Rd
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De�nition and characterization of E-Capra convex sets

De�nition

We say that the set D ⊂ Rd is E-Capra convex if ιD = ι
¢¢′

D meaning
the indicator function ιD is a E-Capra convex function

[Le Franc, 2021, Proposition 6.2.6]

Proposition

Let D ⊆ Rd be a nonempty set

D is E-Capra convex ⇐⇒


D is a cone,
D ∪ {0} is closed,
D ∩ {0} = co

(
n(D)

)
∩ {0}

where co is the closed convex hull
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The ℓ0 pseudonorm is not a norm

Let d ∈ N∗

ℓ0(x) =
d∑

i=1

1{xi ̸=0} , ∀x ∈ Rd

▶ The pseudonorm ℓ0 : Rd → J0, dK = {0, 1, . . . , d}
satis�es 3 out of 4 axioms of a norm
▶ we have ℓ0(x) ≥ 0 ✓
▶ we have

(
ℓ0(x) = 0 ⇐⇒ x = 0

)
✓

▶ we have ℓ0(x + x ′) ≤ ℓ0(x) + ℓ0(x
′) ✓

▶ But... 0-homogeneity holds true

ℓ0(ρx) = ℓ0(x) , ∀ρ ̸= 0

▶ We denote the level sets of the ℓ0 pseudonorm by

ℓ≤k
0 =

{
x ∈ Rd

∣∣ ℓ0(x) ≤ k
}
, ∀k ∈ J0, dK
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E-Capra subdi�erential of pseudonorm ℓ0
[Chancelier and De Lara, 2022]

Proposition

The pseudonorm ℓ0 is E-Capra convex, meaning ℓ0 = ℓ
¢¢′

0

[Le Franc, Chancelier, and De Lara, 2022]

Proposition

Let x ∈ Rd \ {0} and supp(x) =
{
i ∈ {1, . . . , d}

∣∣xi ̸= 0
}

For y ∈ Rd , let the permutation ν : {1, . . . , d} → {1, . . . , d}be such
that |yν(1)| ≥ · · · ≥ |yν(n)|

y ∈ ∂¢ℓ0(x) ⇐⇒


∃λ ∈ R+ , yi = λxi , ∀i ∈ supp(x) ,

|yj | ≤ mini∈supp(x)|yi | , ∀j /∈ supp(x) ,
|yν(k+1)|2 ≥ (∥y∥tnk,2 + 1)2 − (∥y∥tnk,2)

2 ,

∀k ∈ {0, . . . , ℓ0(x)− 1} ,

|yν(ℓ0(x)+1)|
2 ≤ (∥y∥tnℓ0(x),2 + 1)2 − (∥y∥tnℓ0(x),2)

2 ,

∀k ∈ {0, . . . , ℓ0(x)− 1} .
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E-Capra subdi�erential ratio ℓ1/ℓ2

Proposition

We de�ne ℓ1
ℓ2
(0) = 0

Then, the function ℓ1
ℓ2

is E-Capra convex, meaning ℓ1
ℓ2

=
(
ℓ1
ℓ2

)¢¢′

Proposition

For any x ∈ Rd , we have that

y ∈ ∂¢
(ℓ1
ℓ2

)
(x) ⇐⇒ y = sign(x)

where the sign function sign : Rd → {−1, 0, 1}d is de�ned by

∀x ∈ Rd , sign(x) =


−1, if xi < 0
0, if xi = 0
1, if xi > 0
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Three problems with E-Capra convex objective function

▶ cone is the closed convex conical hull

Problems Min of the ratio Min of ℓ0 Spark of a matrix
of two norms

Objective function ℓ1/ℓ2 ℓ0 ℓ0
Objective E-Capra convex ✓ ✓ ✓

Feasible set cone(g1, . . . gr ) \ {0} cone(g1, . . . gr ) \ {0}
{
x ∈ Rd \ {0} : Ax = 0

}
Feasible set E-Capra convex ✓ ✓

▶ The cone generators {g1, . . . gr} ⊂ Rd are such that

0 /∈ co

(
n
(
cone(g1, . . . gr ) \ {0}

))
So cone(g1, . . . gr ) \ {0} is a E-Capra convex set

▶ The set
{
x ∈ Rd \ {0} : Ax = 0

}
is

not E-Capra convex when the matrix A is singular
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Three problems with E-Capra convex objective function

Problems Min of the ratio Min of ℓ0 Spark of a matrix
of two norms

Objective function ℓ1/ℓ2 ℓ0 ℓ0
Objective E-Capra convex ✓ ✓ ✓

Feasible set cone(g1, . . . gr ) \ {0} cone(g1, . . . gr ) \ {0}
{
x ∈ Rd \ {0} : Ax = 0

}
Feasible set E-Capra convex ✓ ✓

▶ Minimization of ℓ1/ℓ2:
toy example which satis�es the convergence
assumptions[Pallaschke and Rolewicz, 1997, Theorem 9.1.1]

▶ Minimization of the pseudonorm ℓ0 on a cone without 0:
more realistic, does not satisfy the convergence assumptions
(ℓ0 not continuous)

▶ Computation of the spark of a matrix:
`semi' E-Capra convex problem
useful in compress sensing [Tillmann and Pfetsch, 2014]
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Reformulation as a minimization program on the sphere

Proposition

Let f : Rd → R be a E-Capra convex function,
and let K ⊂ Rd be a E-Capra convex set

Then, the problem

inf
x∈K\{0}

f (x)

has the same value than

inf
x∈K

f (x)

ℓ2(x) = 1

and their solutions are the same up to normalization by the norm ℓ2
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E-Capra cutting plane method
De�nition

Let K = cone(g1, . . . , gr ) ⊂ Rn be an E-Capra convex cone
Let f : Rn → R be an E-Capra convex function
We call the following algorithm the E-Capra cutting plane method

1. Set k := 0. Find x0 ∈ K such that ℓ2(x0) = 1

2. Calculate an E-Capra subgradient yk ∈ ∂¢f (xk)
Let f−1 = −∞ and

fk = max{fk−1, ⟨·, yk⟩ − f ¢(yk)⟨·, yk⟩ − f ¢(yk)︸ ︷︷ ︸
new cut

}

3. Calculate an optimal solution x̂ ∈ argmin
x∈K

ℓ2(x)=1

fk(x)

4. Set k := k + 1, xk = x̂
Repeat from Step 2 until a stop condition is satis�ed

107 / 128



Di�culties with the E-Capra cutting plane method

▶ The norms of subgradients explode

ℓ2(y
k) −−−→

k→∞
∞

→ Solution: project xk on the i-th axis when |xki | ≈ 0 before

computing yk ∈ ∂¢f (xk)
▶ The sphere constraint ℓ2(x) = 1 is not a convex constraint

→ Solution: use a nonlinear solver (here IpOpt) and add the

constraint ℓ1(x) ≤ ℓ
k
0︸︷︷︸

minimal known value of ℓ0 at step k

to the

subproblem
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E-Capra cutting plane method with local search

De�nition

We call the following algorithm the E-Capra cutting plane method
with local search for the pseudonorm ℓ0

1. Set a threshold ε > 0 Set k := 0 Set the upper bound ℓ
k
0 = n

Find x0 ∈ K such that ℓ2(x0) = 1

2. For each i ∈ {1, . . . , n}, if |xk
i | < ε, set xk

i := 0

3. Calculate an E-Capra subgradient y k ∈ ∂¢f (xk)

Let f−1 = −∞ and fk = max{fk−1, ⟨·, yk⟩ − f ¢(yk)}

4. Calculate an optimal solution x̂ ∈ argmin
x∈K

ℓ2(x)=1 , ℓ1(x)≤ℓ
k
0

fk(x)

5. (Local search) Set xk+1 := x̂ .

Set the 1+ ℓ
k
0 smallest components of x̂ to 0.

If x̂ ∈ K \ {0}, set ℓk+10 := ℓ
k
0 − 1 and xk+1 := x̂ .

Otherwise, set ℓ
k+1
0 := ℓ

k
0

6. Set k := k + 1 Repeat from Step 2 until a stop condition is satis�ed
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Minimization of the ratio of two norms
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Instances: visualization in the 2D case
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Solving time for the ratio of two norms
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Zoom on the low dimensions
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Conclusion for the ratio of two norms

▶ The toy example converges (no surprise, convergence theorem
assumptions are satis�ed)

▶ Tighter cones lead to faster convergence

▶ Experimental observation: when the method �nds the optimal
solution it sticks to it for the following iterations

▶ Future tests: infx ̸=0
∥Ax∥
∥x∥
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Minimization of the pseudonorm ℓ0 over a �nitely generated cone
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Instances

Same instances as the minimization of the ratio of two norms
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Solving time for pseudonorm ℓ0

Relative gap = best value found−optimal value
dimension
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Conclusion for the minimization of pseudonorm ℓ0 in a cone

▶ E-Capra cutting plane method does not converge for ℓ0

▶ E-Capra cutting plane method with local search does not
converge for ℓ0 beyond dimension 4

▶ Maybe the noncontinuity of ℓ0 is in cause
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Computation spark of matrix
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De�nition of the spark of a matrix

De�nition

Let A ∈ Rm×d be a real matrix
Then, we call spark(A) ∈= 1, d , . . . ,∪{+∞} the spark of A which
is given by

spark(A) = min
{
ℓ0(x)

∣∣Ax = 0 , x ̸= 0
}

Proposition

Let A ∈ Rm×d be a real matrix
Then, spark(A) is the smallest number of dependent columns of the
matrix A
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Examples for the spark of a matrix

▶ spark

1 0 0
0 1 0
0 0 0

 = 1

▶ spark

−1 1 0
2 −2 0
3 −3 1

 = 2

▶ spark

1 0 0
0 1 0
0 0 1

 = +∞

▶ spark

1 0 1
0 1 1
1 1 1

 = 3
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Brute force computing of the spark of a matrix

1. Set s := 1

2. For every family {Ai1 , . . . ,Ais} of s columns of A
if the family {Ai1 , . . . ,Ais} is not free, stop and return s

3. Set s := s + 1
If s ≤ d , repeat from Step
Otherwise, return +∞
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Generation of instances

▶ Instances:
square matrices A ∈ Rd×d such that spark(A) = d/2

▶ We have used the following algorithm

1. Randomly choose s − 1 vectors Ai ∈ Rd .
2. Randomly choose s − 1 real numbers µi ∈ R.
3. Compute the vector As =

∑s−1

i=1
µiAi .

4. Randomly choose n − s vectors Ah ∈ Rd .
5. Set the matrix A =

(
A1, . . . ,An

)
.

6. Shu�e the columns of the matrix A.
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Solving time comparison between brute force and E-CAPRA
cutting plane for spark
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Solving time for the E-Capra cutting plane method for spark
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Conclusion for the computing of the spark of a Matrix

▶ Convergence even though the feasible set {x ̸= 0|Ax = 0} is
not E-CAPRA convex

▶ Converges faster than bruteforce

▶ No convergence for ℓ0 and convergence for spark
maybe because
▶ cone(g1, . . . , gr ) is a cone
▶ {x ̸= 0|Ax = 0} is a vector space
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Discussion
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Conclusion of the numerical tests (1)

▶ Ranking of the problems by di�culty

1. (Toy example) the minimization of the ratio of the ℓ1 norm
over the ℓ2 norm;

2. the computation of the spark of a square matrix;
3. the minimization of the ℓ0 pseudonorm in a blunt convex cone.

▶ Computing Spark is not E-Capra convex but converges
Minimization of ℓ0 in a blunt cone is E-Capra but does not
converge

▶ Future tests: see if the minimization of ℓ0 converges when the
constraints are in 'dual' form {x |Ax ≤ 0}
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