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Preprint on HAL

[Rakotomandimby, Chancelier, de Lara, and Le Franc, 2024]
Subgradient Selector in the Generalized Cutting Plane Method

with an Application to Sparse Optimization
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An abstract convex optimization method

[Kelley, 1960] Cutting plane method
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Problem at hand

min
x∈X

f (x)

where

▶ f : Rn → R is finite continuous convex function

▶ X ⊂ Rn is a nonempty compact convex set
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Illustration of the (Kelley’s) cutting plane method

5



Illustration of the (Kelley) cutting plane method
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Illustration of the (Kelley) cutting plane method
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Illustration of the (Kelley) cutting plane method
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Diagram of the cutting plane method

Adding an affine cut

Solving a polyhedral minimization subproblem

Stop condition STOP

x0

y i

x i , z i

YESNO

x i
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Motivation: sparse optimization problem

The pseudonorm ℓ0 : Rn → J0, nK

ℓ0(x) =
n∑

i=1

1{xi ̸=0} , ∀x ∈ Rn

Archetypal sparse minimization problem

min
x∈Rn

Ax=b

ℓ0(x) ▶ A ∈ Rm×n

▶ b ∈ Rm

Applications in

compressive sensing, spike deconvolution, model selection. . .

10



Capra “polyhedral” lower approximation of ℓ0

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2

[Le Franc, Chancelier, and De Lara, 2024]
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Result of Capra-convexity

Theorem

[Chancelier and De Lara, 2022]

If both the source norm ∥·∥ and the dual norm ∥·∥⋆ are orthant-strictly monotonic

(e.g. the Euclidean norm)

∂¢ℓ0(x) ̸= ∅ , ∀x ∈ Rn
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Outline of the presentation

The abstract cutting plane method

Main results: convergence of the abstract cutting plane method

Application to sparse optimization

Conclusion
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Usual subdifferential

Definition

▶ Let ⟨· | ·⟩ : Rn × Rn → R be the scalar product

▶ let h : Rn → R
(
= R ∪ {−∞,+∞}

)
be a function

We define its subdifferential ∂h : Rn ⇒ Rn by

y ∈ ∂h(x) ⇐⇒ ⟨x ′ | y⟩ − h(x ′) ≤ ⟨x | y⟩ − h(x) , ∀x ′ ∈ Rn
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c-subdifferential
Definition

▶ let c : X × Y → R be a finite coupling
where X and Y (nonempty primal set and nonempty dual set)

▶ let h : X → R be a function

We define its c-subdifferential ∂ch : X ⇒ Y by

y ∈ ∂ch(x) ⇐⇒ c(x ′, y)− h(x ′) ≤ c(x , y)− h(x) , ∀x ′ ∈ X

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2

1

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2

1
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From usual convexity to generalized convexity

Usual convexity Generalized convexity

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2

1
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Problem at hand

min
x∈X

h(x)

where

▶ objective function: h : X → R
▶ c-subdifferentiability: ∂ch(x) ̸= ∅ , ∀x ∈ X︸︷︷︸

constraint
set

⊂ X

▶ finite coupling: c : X × Y → R
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Abstract cutting plane method

We say that {x i}i≥0︸ ︷︷ ︸
primal iterates

⊂ X and {z i}i≥1︸ ︷︷ ︸
lower bounds

⊂ R

are generated by CP(h, c ;D, x0), if

1. Initialization. x0 ∈ X︸︷︷︸
constraint set

⊂ X

2. c-subgradient selection.
y i = D(x i ), where D : X → Y s.t. D(x) ∈ ∂ch(x)︸ ︷︷ ︸

c-subgradient selector

3. i-th primal subproblem.

(x i , z i ) ∈ argmin
(x ,z)∈X×R

z s.t.


x ∈ X ,

z ≥ c(x , y j)− c(x j , y j) + h(x j)

∀j ∈ J0, i − 1K

4. Stop condition. If not satisfied i := i + 1. Go to Step 2
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Diagram of the abstract cutting plane method

Adding a c-affine cut

Solving a c-polyhedral minimization subproblem

Stop condition STOP

x0

y i

x i , z i

YESNO

x i
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Lower semicontinuity

▶ We say that a function h :

metric space︷ ︸︸ ︷(
X , d

)
→ R is

lower semicontinuous (l.s.c.) at x ∈ X if h(x) ∈ R
and for all {x i}i≥0 ⊂ X we have that

lim
i→+∞

x i = x =⇒ lim inf
i→+∞

h(x i) ≥ h(x)

▶ We say that h is l.s.c. if it is l.s.c. at x , for all x ∈ X

The pseudonorm ℓ0 is l.s.c.!

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2
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Key assumption

Lipschitz-like property: ∃M > 0 such that

|c(x ,D(x))− c(x ′,D(x))| ≤ Md(x , x ′) , ∀x , x ′ ∈ domh
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Key assumption

Lipschitz-like property: ∃M > 0 such that

|c(x ,D(x))− c(x ′,D(x))| ≤ Md(x , x ′) , ∀x , x ′ ∈ domh

▶ Property on c(·,D(x)) : X → R , ∀x ∈ X

▶ Let h :

metric space︷ ︸︸ ︷(
X , d

)
→ R

▶ The effective domain of h is defined by
domh =

{
x ∈ X : h(x) < +∞

}
▶ We say h is proper if domh ̸= ∅ and h > −∞
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Convergence result for c-cutting plane method

Theorem

▶ h :
(
X , d

)
→ R is a proper l.s.c. function

▶ domh is compact

▶ lower semicontinuity of the functions c(·,D(x)), for all x ∈ dom h

▶ Lipschitz-like property: ∃M > 0 such that

|c(x ,D(x))− c(x ′,D(x))| ≤ Md(x , x ′) , ∀x , x ′ ∈ domh

Then, for all sequences {x i}i≥0, {z i}i≥1 generated by CP(h, c ;D, x0)

▶ {z i}i≥1 increases to h∗ = infX h

▶ {x i}i≥0 has a subsequence {xν(i)}i≥0 converging to some
x∗ ∈ argminX h

26



Stop condition: lowerbound and upperbound sequences

min
j∈J1,iK

ℓ0(x
j)

z i
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Minimizing ℓ0 over a closed subset of the unit sphere

min
x∈Rn

ℓ0(x) + ιX

where

▶ X is a closed subset of the (Euclidean) unit sphere

▶ We will have to be cautious with
the discontinuity points of ℓ0 in X !
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Capra “polyhedral” lower approximation of ℓ0

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2
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Generalized convexity of the ℓ0 pseudonorm

Definition

▶ The pseudonorm ℓ0 : Rn → J0, nK
ℓ0(x) =

∑n
i=1 1{xi ̸=0} , ∀x ∈ Rn

▶ For a source norm ∥·∥, the Capra coupling ¢ : Rn × Rn → R

¢(x , y) =
〈

x

∥x∥
| y

〉
, where

0

0
= 0

Theorem

[Chancelier and De Lara, 2022]

Let ∥·∥ =
√
⟨· | ·⟩ be the source norm for the Capra coupling ¢

∂¢ℓ0(x) ̸= ∅ , ∀x ∈ Rn

Thus, ℓ0(x) = max
y∈Rn

¢(x , y)− ℓ
¢
0 (y)︸ ︷︷ ︸

Capra affine functions of x
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¢-subdifferential
Definition

▶ Let ¢ : Rn × Y → R be a Capra-coupling for a source norm ∥·∥
▶ let h : Rn → R be a function

We define its ¢-subdifferential ∂ch : Rn ⇒ Rn by

y ∈ ∂¢h(x) ⇐⇒ ⟨x ′ | y⟩
∥x ′∥

−h(x ′) ≤ ⟨x | y⟩
∥x∥

−h(x) , ∀x ′ ∈ Rn

with convention 0/0 = 0

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2

1

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2

1
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Problem with the norms of the Capra subgradients

y ∈ ∂¢ℓ0(x) , for x ∈ S
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Problem with the norms of the Capra subgradients

1
Near sparse points, the norms of ¢-subgradients explode
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Problem with the norms of the Capra subgradients

x1

x2
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Proposed solutions: restricting the constraint set

original problem︷ ︸︸ ︷
min
x∈Rn

ℓ0(x) + ιX ≤ min
x∈Rn

ℓ0(x) + ιX∩R︸ ︷︷ ︸
surrogate problem

where R ⊂ Rn is a set such that
the Capra-subgradients of ℓ0 are bounded
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Proposed solutions: restricting the constraint set

Rη =
{
x ∈ Rn : min

1≤k≤n
xk ̸=0

|xk | > η
}

η

1

Removing the primal points
whose minimal ¢-subgradients norm is exploding
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A cutting plane method for the pseudonorm ℓ0

CP(h, ¢;D, x0)
for the minimization problem min

x∈Rn
ℓ0(x) + ιX∩Rη , where η > 0

Example

▶ Objective function: h = ℓ0 + ιX∩Rη

▶ Coupling:

¢(x , y) =
〈

x

∥x∥
| y

〉
, where

0

0
= 0

▶ ¢-subgradient selector: D : X → Y is defined by{
D(x)

}
= argmin

y∈∂¢ℓ0(x)
∥y∥2 , ∀x ∈ X
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A cutting plane method for ℓ0

Lipschitz property is satisfied for
(
¢,D

)
with

|¢
(
x ,D(x)

)
− ¢

(
x ′,D(x)

)
| ≤

√
1− η2 + 1

η2
∥∥x − x ′

∥∥ , ∀x , x ′ ∈ X

η

1
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The computation of the spark of a matrix

▶ Spark of the matrix A ∈ Rm×n

spark(A) := min
x∈Rn\{0}
Ax=0

ℓ0(x)

▶ Interpretation of the spark of a matrix:

The spark of A is the smallest number of
linearly dependent columns in A
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Diagram of the Capra cutting plane method

Adding a ¢-affine cut

Solving a ¢-polyhedral minimization subproblem

Stop condition STOP

x0

y i

x i , z i

YESNO

x i
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Capra cutting plane (primal) subproblem

min
z∈R
x∈Rn

z s.t.


Ax = 0

x ∈ Rη

z ≥ ⟨x | y j⟩
∥x∥ + ℓ0(x

j)− ¢(x j , y j)

∀j ∈ J0, i − 1K
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Capra cutting plane (primal) subproblem

Proposition

Given {x j}j∈J0,i−1K, {y j}j∈J0,i−1K ⊂ Rn,
the i-th primal subproblem of a Capra cutting plane method is

min
z∈R
s ∈ S︸ ︷︷ ︸
sphere

constraint

z s.t.



As = 0

s ∈ Rη

z ≥
〈
s | y j

〉
+ ℓ0(x

j)− ¢(x j , y j)︸ ︷︷ ︸
linear constraint

∀j ∈ J0, i − 1K

We use the General Norm Constraint of the solver Gurobi
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Numerical result in dimension 5

η = 0.001 , gaussian A ∈ R2×5

min
j∈J1,iK

ℓ0(x
j)

z i
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Numerical result in dimension 10

η = 0.001 , gaussian A ∈ R2×10

min
j∈J1,iK

ℓ0(x
j)

z i
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Numerical result in dimension 10

η = 0.001 , gaussian A ∈ R2×10

z i
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Conclusion

▶ Abstract cutting plane for sparse optimization problems

▶

▶
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Conclusion

▶ Abstract cutting plane for sparse optimization problems

▶ Linear programs on the sphere are crucial for the subproblems

▶
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Conclusion

▶ Abstract cutting plane for sparse optimization problems

▶ Linear programs on the sphere are crucial for the subproblems

▶ Numerical challenge:
slow increase of the lowerbounds in higher dimension
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Thank you for your attention!
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Formulas for the Capra subgradient of ℓ0

Theorem

[Le Franc, Chancelier, and De Lara, 2024, Theorem 3.1]
Let y ∈ Rn and ν : Ji , nK → Ji , nK such that |yν(1)| ≥ · · · ≥ |yν(n)|

y ∈ ∂¢ℓ0(x) ⇐⇒



ysupp(x) = λxsupp(x) , λ ≥ 0
|yj | ≤ mini∈supp(x)|yi | , ∀j /∈ supp(x)

|yν(k+1)|2 ≥
(
∥y∥tn(k,2) + 1

)2 − (
∥y∥tn(k,2)

)2
∀k ∈ J0, ℓ0(x)− 1K
|yν(ℓ0(x)+1)|2 ≤

(
∥y∥tn(ℓ0(x),2) + 1

)2 − (
∥y∥tn(ℓ0(x),2)

)2(
when ℓ0(x) ̸= n

)
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Necessary continuity on the domain of the objective
function

Proposition

Let h : X → R be a l.s.c. proper function
If the couple

(
c ,D

)
satisfies the equicontinuous-like property, we

have that

h|domh is continuous
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Rη constraints with binary variables
▶ Let η > 0 and E =

{
x ∈ Rn : min

1≤k≤n
xk ̸=0

|xi | > η
}
× R

▶ Linearization of Rη

x ∈ E ∩ B∞
(
0,M

)
⇐⇒

Alternative
∃(b−, b0, b+) ∈ {0, 1}n
b−j + b0j + b+j = 1

Sparse case
−M(1− b0j ) ≤ xj ≤ M(1− b0i )

Negative threshold case
xj ≤ M(1− b−j )− ηb−j
Positive threshold case
−M(1− b+j ) + ηb+j ≤ xj
∀j ∈ J1, nK

where M > 0
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